Skip to content

Apply data augmentation techniques on YOLO v7 format dataset.

Notifications You must be signed in to change notification settings

securade/data_augmentation_yolov7

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data Augmentation on YOLO

Data augmentation techniques:

  • Translation *
  • Cropping
  • Noise *
  • Brightness *
  • Contrast *
  • Saturation *
  • Gaussian blur *

Build virtual environment:

python -m venv ./venv
source ./venv/bin/activate
pip install -r requirements.txt

Run

python3 main.py --images <IMAGES_FOLDER> --labels <LABELS_FOLDER> 
--output <OUTPUT_FOLDER> --nprocess <NUMBER_OF_AUGMENTED_IMAGES>
python3 main.py --images ../Videos/20231006_144024_tp00003/output/images/ --labels ../Videos/20231006_144024_tp00003/output/labels/ --output input --nprocess 2
splitfolders --ratio .8 .1 .1 -- input/

About

Apply data augmentation techniques on YOLO v7 format dataset.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%