Skip to content

MinoruHenrique/data_augmentation_yolov7

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data Augmentation on YOLO

Data augmentation techniques:

  • Translation *
  • Cropping
  • Noise *
  • Brightness *
  • Contrast *
  • Saturation *
  • Gaussian blur *

Build virtual environment:

python -m venv ./venv
source ./venv/bin/activate
pip install -r requirements.txt

Run

python3 main.py --images <IMAGES_FOLDER> --labels <LABELS_FOLDER> 
--output <OUTPUT_FOLDER> --nprocess <NUMBER_OF_AUGMENTED_IMAGES>

About

Apply data augmentation techniques on YOLO v7 format dataset.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages