This repository contains the implementation of the HFNet from the paper:
HFNet: High-Precision Robotic Grasp Detection in Unstructured Environments Using Hierarchical RGB-D Feature Fusion and Fine-Grained Pose Alignment
Robot grasping experiment video: video
- numpy
- opencv-python
- matplotlib
- scikit-image
- imageio
- torch
- torchvision
- torchsummary
- tensorboardX
- pyrealsense2
- Pillow
This repository supports both the Cornell Grasping Dataset and Jacquard Dataset.
- Download the and extract Cornell Grasping Dataset.
- Convert the PCD files to depth images by running
python -m utils.dataset_processing.generate_cornell_depth <Path To Dataset>
- Download and extract the Jacquard Dataset.
A model can be trained using the train_network.py
script.
Example for Cornell dataset:
python train.py --dataset cornell --dataset-path <Path To Dataset> --description training_cornell
Example for Jacquard dataset:
python train.py --dataset jacquard --dataset-path <Path To Dataset> --description training_jacquard
The trained network can be evaluated using the evaluate.py
script.
Example for Cornell dataset:
python evaluate.py --network <Path to Trained Network> --dataset cornell --dataset-path <Path to Dataset> --iou-eval
python evaluate.py --network <Path to Trained Network> --dataset cornell --dataset-path <Path to Dataset> --iou-eval --vis