Skip to content

Commit

Permalink
Merge pull request #1 from hgb-bin-proteomics/develop
Browse files Browse the repository at this point in the history
v1.0.0 release
  • Loading branch information
michabirklbauer authored Jan 21, 2024
2 parents 8626788 + 1326fbe commit ca5b530
Show file tree
Hide file tree
Showing 8 changed files with 433 additions and 1 deletion.
47 changes: 47 additions & 0 deletions .github/workflows/python-app.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,47 @@
# This workflow will install Python dependencies, run tests and lint with a variety of Python versions
# Reference workflow provided by (c) GitHub
# For more information see: https://help.github.com/actions/language-and-framework-guides/using-python-with-github-actions

name: msannika_merge

on:
push:
branches: [ master ]
pull_request:
branches: [ master ]

jobs:
build:

runs-on: ubuntu-latest
strategy:
matrix:
python-version: ['3.7', '3.8', '3.9', '3.10', '3.11', '3.12']

steps:
- uses: actions/checkout@v3
- name: Set up Python ${{ matrix.python-version }}
uses: actions/setup-python@v3
with:
python-version: ${{ matrix.python-version }}
- name: Copy scripts and data to "/tests"
run: |
cp msannika_merge.py tests
cp data/DSSO_CSMs.xlsx .
cp data/ncDSSO_CSMs.xlsx .
wget https://raw.githubusercontent.com/hgb-bin-proteomics/MSAnnika_FDR/master/msannika_fdr.py
cp msannika_fdr.py tests
- name: Install dependencies
run: |
python -m pip install --upgrade pip
python -m pip install flake8 pytest
if [ -f requirements.txt ]; then pip install -r requirements.txt; fi
- name: Lint with flake8
run: |
# stop the build if there are Python syntax errors or undefined names
flake8 . --count --select=E9,F63,F7,F82 --show-source --statistics
# exit-zero treats all errors as warnings. The GitHub editor is 127 chars wide
flake8 . --count --exit-zero --max-complexity=10 --max-line-length=127 --statistics
- name: Test with pytest
run: |
pytest tests/tests.py
28 changes: 28 additions & 0 deletions CITATION.cff
Original file line number Diff line number Diff line change
@@ -0,0 +1,28 @@
cff-version: 1.2.0
preferred-citation:
type: article
authors:
- family-names: "Birklbauer"
given-names: "Micha J."
orcid: "https://orcid.org/0009-0005-1051-179X"
- family-names: "Matzinger"
given-names: "Manuel"
orcid: "https://orcid.org/0000-0002-9765-7951"
- family-names: "Müller"
given-names: "Fränze"
orcid: "https://orcid.org/0000-0003-3764-3547"
- family-names: "Mechtler"
given-names: "Karl"
orcid: "https://orcid.org/0000-0002-3392-9946"
- family-names: "Dorfer"
given-names: "Viktoria"
orcid: "https://orcid.org/0000-0002-5332-5701"
doi: "10.1021/acs.jproteome.3c00325"
journal: "Journal of Proteome Research"
month: 9
start: 3009
end: 3021
title: "MS Annika 2.0 Identifies Cross-Linked Peptides in MS2–MS3-Based Workflows at High Sensitivity and Specificity"
issue: 9
volume: 22
year: 2023
168 changes: 167 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
@@ -1 +1,167 @@
# MSAnnika_Combine_Results
![workflow_state](https://github.com/hgb-bin-proteomics/MSAnnika_Combine_Results/workflows/msannika_merge/badge.svg)

# MS Annika Combine Results

A script to merge and optionally validate several [MS Annika](https://github.com/hgb-bin-proteomics/MSAnnika)
search results. The main use case would be for merging results from different MS
Annika runs, e.g. combining results from a cleavable and non-cleavable MS Annika
search or combining results from different doublet distances.

## Usage

- Install python 3.7+: [https://www.python.org/downloads/](https://www.python.org/downloads/)
- Install requirements: `pip install -r requirements.txt`
- Export MS Annika CSM results from Proteome Discoverer to Microsoft Excel format.
- **Important:** CSMs should not be filtered! Export all (unvalidated) CSMs including decoy hits!
- Run `python msannika_merge.py filename1.xlsx filename2.xlsx -fdr 0.01` (see below for more examples).
- The script may take a few minutes, depending on the number of CSMs to process.
- Done!

## Examples

`msannika_merge.py` takes one positional and two optional arguments. The first
argument always has to be the filename(s) of the MS Annika CSM result file(s).
You may specify any number of result files! For demonstration purposes we will
use the files supplied in the `/data` folder:
- `DSSO_CSMs.xlsx` contains unvalidated CSMs from a cleavable MS Annika search
using the crosslinker DSSO.
- `ncDSSO_CSMs.xlsx` contains unvalidated CSMs from a non-cleavable MS Annika
search using the crosslinker DSSO.

The following is a valid `msannika_merge.py` call:

```bash
python msannika_merge.py DSSO_CSMs.xlsx ncDSSO_CSMs.xlsx
```

This will merge CSMs from all given files, in this case `DSSO_CSMs.xlsx` and
`ncDSSO_CSMs.xlsx` into a result file called `CSMs_merged.xlsx`. You can also
set a prefix for the generated result file(s) like this:

```bash
python msannika_merge.py DSSO_CSMs.xlsx ncDSSO_CSMs.xlsx -o All_CSMs.xlsx
```

This will merge CSMs from all given files, exactly like the last command, but
the generated result file will now be named `All_CSMs_merged.xlsx`.

If you suppy the optional argument `-fdr` or `--false_discovery_rate` and the
desired FDR as a floating point number, the CSMs will be merged, then validated,
then grouped by sequence and position to crosslinks and those crosslinks will
again be validated for the given FDR. To group CSMs and validate CSMs and
crosslinks the [MS Annika FDR](https://github.com/hgb-bin-proteomics/MSAnnika_FDR)
script is downloaded and used. Validation therefore requires an active internet
connection!

```bash
python msannika_merge.py DSSO_CSMs.xlsx ncDSSO_CSMs.xlsx -fdr 0.01
```

This will merge CSMs from all given files, then validate the merged CSMs for
estimated 1% FDR, then group CSMs to crosslinks and finally validate the
crosslinks for estimated 1% FDR. The following files will be generated:
- `CSMs_merged.xlsx`: The merged CSMs from all given files.
- `CSMs_merged_validated.xlsx`: The merged CSMs that are above the estimated 1%
FDR threshold.
- `Crosslinks.xlsx`: The crosslinks that result from grouping the merged CSMs.
- `Crosslinks_validated.xlsx`: The crosslinks that are above the estimated 1%
FDR threshold.

Note that the following command will produce the same output (FDR values >= 1
will automatically be divided by 100):

```bash
python msannika_merge.py DSSO_CSMs.xlsx ncDSSO_CSMs.xlsx -fdr 1
```

## Parameters

```python
"""
DESCRIPTION:
A script to combine results from several MS Annika searches.
USAGE:
msannika_merge.py f [f ...]
[-fdr FDR][--false_discovery_rate FDR]
[-h][--help]
[--version]
positional arguments:
f MS Annika result files in Microsoft Excel format (.xlsx)
to process. MS Annika result files have to be
unvalidated CSMs including decoys!
optional arguments:
-fdr FDR, --false_discovery_rate FDR
False discovery rate to validate results for. Supports
both percentage input (e.g. 1) or fraction input (e.g.
0.01). By default not set and results will only be
merged. Validation requires internet connection because
the MS Annika FDR module will be downloaded to calculate
FDR.
Default: None
-o PREFIX, --output PREFIX
Prefix of the output file(s).
Default: None
-h, --help show this help message and exit
--version show program's version number and exit
"""
```

## Function Documentation

If you want to integrate the MS Annika Combine Results process into your own
scripts, you can import the following function as given:

```python
import pandas as pd

cdsso = pd.read_excel("DSSO_CSMs.xlsx")
ncdsso = pd.read_excel("ncDSSO_CSMs.xlsx")

# Merging CSMs
from msannika_merge import merge
all_csms = merge([cdsso, ncdsso])

# The function signature of merge is:
def merge(files: List[str]) -> pd.DataFrame:
"""code omitted"""
return
```

For validation please use the functions provided in [MS Annika FDR](https://github.com/hgb-bin-proteomics/MSAnnika_FDR).

## Known Issues

[List of known issues](https://github.com/hgb-bin-proteomics/MSAnnika_Combine_Results/issues)

## Citing

If you are using the MS Annika Combine Results script please cite:
```
MS Annika 2.0 Identifies Cross-Linked Peptides in MS2–MS3-Based Workflows at High Sensitivity and Specificity
Micha J. Birklbauer, Manuel Matzinger, Fränze Müller, Karl Mechtler, and Viktoria Dorfer
Journal of Proteome Research 2023 22 (9), 3009-3021
DOI: 10.1021/acs.jproteome.3c00325
```

If you are using MS Annika please cite:
```
MS Annika 2.0 Identifies Cross-Linked Peptides in MS2–MS3-Based Workflows at High Sensitivity and Specificity
Micha J. Birklbauer, Manuel Matzinger, Fränze Müller, Karl Mechtler, and Viktoria Dorfer
Journal of Proteome Research 2023 22 (9), 3009-3021
DOI: 10.1021/acs.jproteome.3c00325
```
or
```
MS Annika: A New Cross-Linking Search Engine
Georg J. Pirklbauer, Christian E. Stieger, Manuel Matzinger, Stephan Winkler, Karl Mechtler, and Viktoria Dorfer
Journal of Proteome Research 2021 20 (5), 2560-2569
DOI: 10.1021/acs.jproteome.0c01000
```

## License

- [MIT](https://github.com/hgb-bin-proteomics/MSAnnika_Combine_Results/blob/master/LICENSE)

## Contact

- [[email protected]](mailto:[email protected])
Binary file added data/DSSO_CSMs.xlsx
Binary file not shown.
Binary file added data/ncDSSO_CSMs.xlsx
Binary file not shown.
151 changes: 151 additions & 0 deletions msannika_merge.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
#!/usr/bin/env python3

# MS ANNIKA COMBINE RESULTS
# 2024 (c) Micha Johannes Birklbauer
# https://github.com/michabirklbauer/
# [email protected]

# version tracking
__version = "1.0.0"
__date = "2024-01-21"

# REQUIREMENTS
# pip install pandas
# pip install openpyxl

######################

"""
DESCRIPTION:
A script to combine results from several MS Annika searches.
USAGE:
msannika_merge.py f [f ...]
[-fdr FDR][--false_discovery_rate FDR]
[-h][--help]
[--version]
positional arguments:
f MS Annika result files in Microsoft Excel format (.xlsx)
to process. MS Annika result files have to be
unvalidated CSMs including decoys!
optional arguments:
-fdr FDR, --false_discovery_rate FDR
False discovery rate to validate results for. Supports
both percentage input (e.g. 1) or fraction input (e.g.
0.01). By default not set and results will only be
merged. Validation requires internet connection because
the MS Annika FDR module will be downloaded to calculate
FDR.
Default: None
-o PREFIX, --output PREFIX
Prefix of the output file(s).
Default: None
-h, --help show this help message and exit
--version show program's version number and exit
"""

######################

import argparse
import pandas as pd

from typing import List
from typing import Dict

def merge(files: List[str]) -> pd.DataFrame:

all_csms = dict()
columns = None

for f, file in enumerate(files):
df = pd.read_excel(file)
if columns is None:
columns = df.columns.tolist()
for i, row in df.iterrows():
spectrum_file = str(row["Spectrum File"])
scan_nr = int(row["First Scan"])
score = float(row["Combined Score"])

if spectrum_file in all_csms:
if scan_nr in all_csms[spectrum_file]:
if all_csms[spectrum_file][scan_nr]["score"] < score:
all_csms[spectrum_file][scan_nr] = {"row": row, "score": score}
else:
all_csms[spectrum_file][scan_nr] = {"row": row, "score": score}
else:
all_csms[spectrum_file] = {scan_nr: {"row": row, "score": score}}
print(f"Processed {f + 1} CSM files...")

rows = list()

for spectrum_file in all_csms:
for scan_nr in all_csms[spectrum_file]:
rows.append(all_csms[spectrum_file][scan_nr]["row"])

return pd.concat(rows, ignore_index = True, axis = 1, names = columns).T


def main(argv = None) -> Dict[str, pd.DataFrame]:
parser = argparse.ArgumentParser()
parser.add_argument(metavar = "f",
dest = "files",
help = "Name/Path of the MS Annika CSM result files to process.",
type = str,
nargs = "+")
parser.add_argument("-fdr", "--false_discovery_rate",
dest = "fdr",
default = None,
help = "FDR for CSM/crosslink validation.",
type = float)
parser.add_argument("-o", "--output",
dest = "output",
default = None,
help = "Prefix of the output file(s).",
type = str)
parser.add_argument("--version",
action = "version",
version = __version)
args = parser.parse_args(argv)

merged_df = merge(args.files)

result_dict = {"CSMs_merged": merged_df, "CSMs_merged_validated": None,
"Crosslinks": None, "Crosslinks_validated": None}

if args.output is not None:
merged_df.to_excel(".xlsx".join(args.output.split(".xlsx")[:-1]) + "_merged.xlsx", sheet_name = "CSMs", index = False)
else:
merged_df.to_excel("CSMs_merged.xlsx", sheet_name = "CSMs", index = False)

if args.fdr is not None:

print("Validating using MS Annika FDR...")

import urllib.request as ur
msannika_fdr_url = "https://raw.githubusercontent.com/hgb-bin-proteomics/MSAnnika_FDR/master/msannika_fdr.py"
ur.urlretrieve(msannika_fdr_url, "msannika_fdr.py")

from msannika_fdr import MSAnnika_CSM_Grouper as grouper
from msannika_fdr import MSAnnika_CSM_Validator as csm_val
from msannika_fdr import MSAnnika_Crosslink_Validator as xl_val

validated_csms = csm_val.validate(merged_df, args.fdr)
result_dict["CSMs_merged_validated"] = validated_csms
crosslinks = grouper.group(merged_df)
result_dict["Crosslinks"] = crosslinks
validated_crosslinks = xl_val.validate(crosslinks, args.fdr)
result_dict["Crosslinks_validated"] = validated_crosslinks

if args.output is not None:
validated_csms.to_excel(".xlsx".join(args.output.split(".xlsx")[:-1]) + "_merged_validated.xlsx", sheet_name = "CSMs", index = False)
crosslinks.to_excel(".xlsx".join(args.output.split(".xlsx")[:-1]) + "_crosslinks.xlsx", sheet_name = "Crosslinks", index = False)
validated_crosslinks.to_excel(".xlsx".join(args.output.split(".xlsx")[:-1]) + "_crosslinks_validated.xlsx", sheet_name = "Crosslinks", index = False)
else:
validated_csms.to_excel("CSMs_merged_validated.xlsx", sheet_name = "CSMs", index = False)
crosslinks.to_excel("Crosslinks.xlsx", sheet_name = "Crosslinks", index = False)
validated_crosslinks.to_excel("Crosslinks_validated.xlsx", sheet_name = "Crosslinks", index = False)

print("Done!")
return result_dict

if __name__ == "__main__":
r = main()
Loading

0 comments on commit ca5b530

Please sign in to comment.