Skip to content

aditi184/Person_Re-Identification

Repository files navigation

Python

Person Re-Identification

Results

On validation set

Model CMC@rank-1 CMC@rank-5 mAP Download
Baseline 92.9 96.4 91.5 model
LA-TF++ (ours) 92.9 1.0 93.2 model

Installation

pip install -r requirements.txt

Running Models

Training

Locally-Aware Transformer (Baseline)

python train_baseline.py --train_data_dir ./data/train --model_name la-tf_baseline --model_dir ./model

LA-TF++ (Our model)

python run-train.py --train_data_dir ./data/train --model_name la-tf++_final --model_dir ./model

Testing

python run-test.py --model_path <path-to-saved-model> --test_data ./data/val

The script run-test.py takes in the query and gallery images (present in the test_data) and computes the following metrics:

  1. CMC@rank-1
  2. CMC@rank-5
  3. mean Average Precision (mAP)

Visualization

python run-test.py --model_path <path-to-saved-model> --test_data ./data/val --visualize --save_preds <path-to-save-images>

Dataset

The dataset has 114 unique persons. The train and val set contain 62 and 12 persons, respectively. Each person has been captured using 2 cameras from 8 different angles.

Acknowledgements

Authors

Computer Vision course project (course webpage) taken by Prof. Chetan Arora

About

Person ReIdentification using Locally Aware Transformers

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published