On validation set
Model | CMC@rank-1 | CMC@rank-5 | mAP | Download |
---|---|---|---|---|
Baseline | 92.9 | 96.4 | 91.5 | model |
LA-TF++ (ours) | 92.9 | 1.0 | 93.2 | model |
pip install -r requirements.txt
Locally-Aware Transformer (Baseline)
python train_baseline.py --train_data_dir ./data/train --model_name la-tf_baseline --model_dir ./model
LA-TF++ (Our model)
python run-train.py --train_data_dir ./data/train --model_name la-tf++_final --model_dir ./model
python run-test.py --model_path <path-to-saved-model> --test_data ./data/val
The script run-test.py
takes in the query and gallery images (present in the test_data
) and computes the following metrics:
- CMC@rank-1
- CMC@rank-5
- mean Average Precision (mAP)
python run-test.py --model_path <path-to-saved-model> --test_data ./data/val --visualize --save_preds <path-to-save-images>
The dataset has 114 unique persons. The train and val set contain 62 and 12 persons, respectively. Each person has been captured using 2 cameras from 8 different angles.
- Locally Aware Transformer (LA-TF) is adaped from Person Re-Identification with a Locally Aware Transformer.
- Triplet Loss and Label Smoothing are adapted from Alignedreid++.
Computer Vision course project (course webpage) taken by Prof. Chetan Arora