Skip to content

Latest commit

 

History

History
68 lines (43 loc) · 2.29 KB

README.md

File metadata and controls

68 lines (43 loc) · 2.29 KB

Python

Person Re-Identification

Results

On validation set

Model CMC@rank-1 CMC@rank-5 mAP Download
Baseline 92.9 96.4 91.5 model
LA-TF++ (ours) 92.9 1.0 93.2 model

Installation

pip install -r requirements.txt

Running Models

Training

Locally-Aware Transformer (Baseline)

python train_baseline.py --train_data_dir ./data/train --model_name la-tf_baseline --model_dir ./model

LA-TF++ (Our model)

python run-train.py --train_data_dir ./data/train --model_name la-tf++_final --model_dir ./model

Testing

python run-test.py --model_path <path-to-saved-model> --test_data ./data/val

The script run-test.py takes in the query and gallery images (present in the test_data) and computes the following metrics:

  1. CMC@rank-1
  2. CMC@rank-5
  3. mean Average Precision (mAP)

Visualization

python run-test.py --model_path <path-to-saved-model> --test_data ./data/val --visualize --save_preds <path-to-save-images>

Dataset

The dataset has 114 unique persons. The train and val set contain 62 and 12 persons, respectively. Each person has been captured using 2 cameras from 8 different angles.

Acknowledgements

Authors

Computer Vision course project (course webpage) taken by Prof. Chetan Arora