This repository contains the necessary code to replicate the SAR2CUBE infrastructure.
A paper was presented at IGARSS 2023, you can find it here: https://hdl.handle.net/10863/36007
The main idea consist in coregistering a stack of Sentinel-1 SLC data, which will be used to generate different products on-the-fly like:
- Temporal subset
- Spatial subset
- Intensity/Amplitude
- Multilook
- Box-car filter
- Interferometry
- Pixel Selection for PSI
- Geocoding
The preprocessing was tested with ESA SNAP 9 and 10 and the Sentinel toolbox. We suggest to use the latest SNAP 10, since it is compatible with recent Python versions and not limited to Python 3.6 like SNAP 9.
- Install SNAP following the official instructions here: https://step.esa.int/main/download/snap-download/
- To enable the storage of the phase components, you need to recompile the Sentinel-1 toolbox, please read the discussion here: https://forum.step.esa.int/t/snap-compiled-from-source-to-set-output-phase-true/40096/8
- Configure python snappy after creating the provided Python environment:
Please install SNAP 10, SNAP 9 wouldn't be compatible with the following Python environment.
- Install Anaconda to manage virtual environments. You can follow the instructions here
- Clone the repository and get into the repo folder:
git clone https://github.com/SARScripts/preprocess
cd preprocess
- Create a new conda environment with the following command:
conda env create -f sar2cube.yml
- Once the process is complete, you can activate the environment:
conda activate sar2cube
Preprocessing operations over SLC images for SAR2CUBE:
-
Update paths in CONF/config.project
-
Update paths in CONF/order_file_test.csv
-
Update CONF/list_images.csv
Navigate to the path of preprocessing.py and run it with the config file path:
python preprocessing.py path/to/project.config
After a successfull preprocessing, this is how the output directory should look like this (with more date pairs):
Output directory content:
├── 00_calib
│ ├── 20181010_calib.data
│ │ ├── i_IW1_VH.hdr
│ │ ├── i_IW1_VH.img
│ │ ├── i_IW1_VV.hdr
│ │ ├── i_IW1_VV.img
│ │ ├── i_IW2_VH.hdr
│ │ ├── i_IW2_VH.img
│ │ ├── i_IW2_VV.hdr
│ │ ├── i_IW2_VV.img
│ │ ├── i_IW3_VH.hdr
│ │ ├── i_IW3_VH.img
│ │ ├── i_IW3_VV.hdr
│ │ ├── i_IW3_VV.img
│ │ ├── q_IW1_VH.hdr
│ │ ├── q_IW1_VH.img
│ │ ├── q_IW1_VV.hdr
│ │ ├── q_IW1_VV.img
│ │ ├── q_IW2_VH.hdr
│ │ ├── q_IW2_VH.img
│ │ ├── q_IW2_VV.hdr
│ │ ├── q_IW2_VV.img
│ │ ├── q_IW3_VH.hdr
│ │ ├── q_IW3_VH.img
│ │ ├── q_IW3_VV.hdr
│ │ ├── q_IW3_VV.img
│ │ ├── tie_point_grids
│ │ └── vector_data
│ ├── 20181010_calib.dim
├── 00_data
│ ├── S1A_IW_SLC__1SDV_20230710T170721_20230710T170748_049364_05EFA1_25AD.SAFE
│ │ ├── S1A_IW_SLC__1SDV_20230710T170721_20230710T170748_049364_05EFA1_25AD.SAFE-report-20230710T175811.pdf
│ │ ├── annotation
│ │ ├── manifest.safe
│ │ ├── measurement
│ │ │ ├── s1a-iw1-slc-vh-20230710t170722-20230710t170747-049364-05efa1-001.tiff
│ │ │ ├── s1a-iw1-slc-vv-20230710t170722-20230710t170747-049364-05efa1-004.tiff
│ │ │ ├── s1a-iw2-slc-vh-20230710t170723-20230710t170748-049364-05efa1-002.tiff
│ │ │ ├── s1a-iw2-slc-vv-20230710t170723-20230710t170748-049364-05efa1-005.tiff
│ │ │ ├── s1a-iw3-slc-vh-20230710t170721-20230710t170746-049364-05efa1-003.tiff
│ │ │ └── s1a-iw3-slc-vv-20230710t170721-20230710t170746-049364-05efa1-006.tiff
│ │ ├── preview
│ │ └── support
├── 01_ifg_calib
│ ├── 20181010_20181010_SLC_calib_Coregistered.data
│ │ ├── fep_VH_10Oct2018_10Oct2018.hdr
│ │ ├── fep_VH_10Oct2018_10Oct2018.img
│ │ ├── tgp_VH_10Oct2018_10Oct2018.hdr
│ │ ├── tgp_VH_10Oct2018_10Oct2018.img
│ │ ├── tie_point_grids
│ │ └── vector_data
│ ├── 20181010_20181010_SLC_calib_Coregistered.dim
├── 01_slc_calib
│ ├── 01_slc_calib/20181010_20181010_SLC_calib_Coregistered.data/
│ │ ├── i_VH_10Oct2018.hdr
│ │ ├── i_VH_10Oct2018.img
│ │ ├── i_VV_10Oct2018.hdr
│ │ ├── i_VV_10Oct2018.img
│ │ ├── phase.hdr
│ │ ├── phase.img
│ │ ├── q_VH_10Oct2018.hdr
│ │ ├── q_VH_10Oct2018.img
│ │ ├── q_VV_10Oct2018.hdr
│ │ ├── q_VV_10Oct2018.img
│ │ ├── tie_point_grids
│ │ ├── vector_data
│ ├── 20181010_20181010_SLC_calib_Coregistered.dim
├── 03_gc
│ ├── elevation.hdr
│ ├── elevation.img
│ ├── ifg_gc_20181010_20230710.data
│ │ ├── coh_VH_10Oct2018_10Oct2018.hdr
│ │ ├── coh_VH_10Oct2018_10Oct2018.img
│ │ ├── coh_VV_10Oct2018_10Oct2018.hdr
│ │ ├── coh_VV_10Oct2018_10Oct2018.img
│ │ ├── elevation.hdr
│ │ ├── elevation.img
│ │ ├── fep_VH_10Oct2018_10Oct2018.hdr
│ │ ├── fep_VH_10Oct2018_10Oct2018.img
│ │ ├── fep_VV_10Oct2018_10Oct2018.hdr
│ │ ├── fep_VV_10Oct2018_10Oct2018.img
│ │ ├── i_ifg_VH_10Oct2018_10Oct2018.hdr
│ │ ├── i_ifg_VH_10Oct2018_10Oct2018.img
│ │ ├── i_ifg_VV_10Oct2018_10Oct2018.hdr
│ │ ├── i_ifg_VV_10Oct2018_10Oct2018.img
│ │ ├── orthorectifiedLat.hdr
│ │ ├── orthorectifiedLat.img
│ │ ├── orthorectifiedLon.hdr
│ │ ├── orthorectifiedLon.img
│ │ ├── q_ifg_VH_10Oct2018_10Oct2018.hdr
│ │ ├── q_ifg_VH_10Oct2018_10Oct2018.img
│ │ ├── q_ifg_VV_10Oct2018_10Oct2018.hdr
│ │ ├── q_ifg_VV_10Oct2018_10Oct2018.img
│ │ ├── tgp_VH_10Oct2018_10Oct2018.hdr
│ │ ├── tgp_VH_10Oct2018_10Oct2018.img
│ │ ├── tgp_VV_10Oct2018_10Oct2018.hdr
│ │ ├── tgp_VV_10Oct2018_10Oct2018.img
│ │ ├── tie_point_grids
│ │ └── vector_data
│ ├── ifg_gc_20181010_20230710.dim
│ ├── incid_angle.hdr
│ ├── incid_angle.img
│ ├── incident_angle.hdr
│ ├── incident_angle.img
│ ├── orthorectifiedLat.hdr
│ ├── orthorectifiedLat.img
│ ├── orthorectifiedLon.hdr
│ ├── orthorectifiedLon.img
├── baselines.csv
├── baselines_filtered.csv
├── process_log.csv
The generated data stack can be indexed in OpenDataCube with the following instructions. Run the following commands in the ODC folder.
- Since ODC doesn't allow to index not-georeferenced data, or data on an irregular grid, we generate VRTs https://gdal.org/drivers/raster/vrt.html , assigning to each file a fake projection. Please modify the script with your paths and then run it:
python prepare_sar2cube_vrts.py
- With the generated VRTs, we can create the corresponding ODC dataset files. You can do so using the script:
prepare_sar2cube_datasets.py
:
python prepare_sar2cube_datasets.py --help
usage: prepare_sar2cube_datasets.py [-h] [-t TEMPLATE] [-p PRODUCT] [-b BASELINES] [-o OVERWRITE] source target
Create the eo3 ODC datasets files given a folder with the VRTs. Each VRTs must have a single band.
positional arguments:
source Path to the input folder with VRTs files.
target Path to write the output datasets files.
optional arguments:
-h, --help show this help message and exit
-t TEMPLATE, --template TEMPLATE Path to the template yaml dataset file.
-p PRODUCT, --product PRODUCT Path to the yaml product file.
-b BASELINES, --baselines BASELINES Path to the baselines file.
-o OVERWRITE, --overwrite OVERWRITE Overwrite the destination file if already exists. (default: 0).
Author: Michele Claus, [email protected]
- You can finally add the product to ODC:
datacube product add SAR2Cube_ASC_117_datacube.yaml
- Add the datasets to the product:
find ./datasets/ -type f -name "*.yaml"| xargs --max-procs=8 -n1 datacube dataset add -p SAR2Cube_ASC_117_datacube