Skip to content

Latest commit

 

History

History
224 lines (194 loc) · 9.54 KB

README.md

File metadata and controls

224 lines (194 loc) · 9.54 KB

Introduction

This repository contains the necessary code to replicate the SAR2CUBE infrastructure.

A paper was presented at IGARSS 2023, you can find it here: https://hdl.handle.net/10863/36007

The main idea consist in coregistering a stack of Sentinel-1 SLC data, which will be used to generate different products on-the-fly like:

  • Temporal subset
  • Spatial subset
  • Intensity/Amplitude
  • Multilook
  • Box-car filter
  • Interferometry
  • Pixel Selection for PSI
  • Geocoding

Installation

ESA SNAP

The preprocessing was tested with ESA SNAP 9 and 10 and the Sentinel toolbox. We suggest to use the latest SNAP 10, since it is compatible with recent Python versions and not limited to Python 3.6 like SNAP 9.

Python Environment

Please install SNAP 10, SNAP 9 wouldn't be compatible with the following Python environment.

  1. Install Anaconda to manage virtual environments. You can follow the instructions here
  2. Clone the repository and get into the repo folder:
git clone https://github.com/SARScripts/preprocess
cd preprocess
  1. Create a new conda environment with the following command:
conda env create -f sar2cube.yml
  1. Once the process is complete, you can activate the environment:
conda activate sar2cube

SAR2Cube Preprocessing Workflow

Preprocessing operations over SLC images for SAR2CUBE:

Generate the coregistered data stack

  • Update paths in CONF/config.project

  • Update paths in CONF/order_file_test.csv

  • Update CONF/list_images.csv

Navigate to the path of preprocessing.py and run it with the config file path:

python preprocessing.py path/to/project.config

After a successfull preprocessing, this is how the output directory should look like this (with more date pairs):

Output directory content:
├── 00_calib
│   ├── 20181010_calib.data
│   │   ├── i_IW1_VH.hdr
│   │   ├── i_IW1_VH.img
│   │   ├── i_IW1_VV.hdr
│   │   ├── i_IW1_VV.img
│   │   ├── i_IW2_VH.hdr
│   │   ├── i_IW2_VH.img
│   │   ├── i_IW2_VV.hdr
│   │   ├── i_IW2_VV.img
│   │   ├── i_IW3_VH.hdr
│   │   ├── i_IW3_VH.img
│   │   ├── i_IW3_VV.hdr
│   │   ├── i_IW3_VV.img
│   │   ├── q_IW1_VH.hdr
│   │   ├── q_IW1_VH.img
│   │   ├── q_IW1_VV.hdr
│   │   ├── q_IW1_VV.img
│   │   ├── q_IW2_VH.hdr
│   │   ├── q_IW2_VH.img
│   │   ├── q_IW2_VV.hdr
│   │   ├── q_IW2_VV.img
│   │   ├── q_IW3_VH.hdr
│   │   ├── q_IW3_VH.img
│   │   ├── q_IW3_VV.hdr
│   │   ├── q_IW3_VV.img
│   │   ├── tie_point_grids
│   │   └── vector_data
│   ├── 20181010_calib.dim
├── 00_data
│   ├── S1A_IW_SLC__1SDV_20230710T170721_20230710T170748_049364_05EFA1_25AD.SAFE
│   │   ├── S1A_IW_SLC__1SDV_20230710T170721_20230710T170748_049364_05EFA1_25AD.SAFE-report-20230710T175811.pdf
│   │   ├── annotation
│   │   ├── manifest.safe
│   │   ├── measurement
│   │   │   ├── s1a-iw1-slc-vh-20230710t170722-20230710t170747-049364-05efa1-001.tiff
│   │   │   ├── s1a-iw1-slc-vv-20230710t170722-20230710t170747-049364-05efa1-004.tiff
│   │   │   ├── s1a-iw2-slc-vh-20230710t170723-20230710t170748-049364-05efa1-002.tiff
│   │   │   ├── s1a-iw2-slc-vv-20230710t170723-20230710t170748-049364-05efa1-005.tiff
│   │   │   ├── s1a-iw3-slc-vh-20230710t170721-20230710t170746-049364-05efa1-003.tiff
│   │   │   └── s1a-iw3-slc-vv-20230710t170721-20230710t170746-049364-05efa1-006.tiff
│   │   ├── preview
│   │   └── support
├── 01_ifg_calib
│   ├── 20181010_20181010_SLC_calib_Coregistered.data
│   │   ├── fep_VH_10Oct2018_10Oct2018.hdr
│   │   ├── fep_VH_10Oct2018_10Oct2018.img
│   │   ├── tgp_VH_10Oct2018_10Oct2018.hdr
│   │   ├── tgp_VH_10Oct2018_10Oct2018.img
│   │   ├── tie_point_grids
│   │   └── vector_data
│   ├── 20181010_20181010_SLC_calib_Coregistered.dim
├── 01_slc_calib
│   ├── 01_slc_calib/20181010_20181010_SLC_calib_Coregistered.data/
│   │   ├── i_VH_10Oct2018.hdr
│   │   ├── i_VH_10Oct2018.img
│   │   ├── i_VV_10Oct2018.hdr
│   │   ├── i_VV_10Oct2018.img
│   │   ├── phase.hdr
│   │   ├── phase.img
│   │   ├── q_VH_10Oct2018.hdr
│   │   ├── q_VH_10Oct2018.img
│   │   ├── q_VV_10Oct2018.hdr
│   │   ├── q_VV_10Oct2018.img
│   │   ├── tie_point_grids
│   │   ├── vector_data
│   ├── 20181010_20181010_SLC_calib_Coregistered.dim
├── 03_gc
│   ├── elevation.hdr
│   ├── elevation.img
│   ├── ifg_gc_20181010_20230710.data
│   │   ├── coh_VH_10Oct2018_10Oct2018.hdr
│   │   ├── coh_VH_10Oct2018_10Oct2018.img
│   │   ├── coh_VV_10Oct2018_10Oct2018.hdr
│   │   ├── coh_VV_10Oct2018_10Oct2018.img
│   │   ├── elevation.hdr
│   │   ├── elevation.img
│   │   ├── fep_VH_10Oct2018_10Oct2018.hdr
│   │   ├── fep_VH_10Oct2018_10Oct2018.img
│   │   ├── fep_VV_10Oct2018_10Oct2018.hdr
│   │   ├── fep_VV_10Oct2018_10Oct2018.img
│   │   ├── i_ifg_VH_10Oct2018_10Oct2018.hdr
│   │   ├── i_ifg_VH_10Oct2018_10Oct2018.img
│   │   ├── i_ifg_VV_10Oct2018_10Oct2018.hdr
│   │   ├── i_ifg_VV_10Oct2018_10Oct2018.img
│   │   ├── orthorectifiedLat.hdr
│   │   ├── orthorectifiedLat.img
│   │   ├── orthorectifiedLon.hdr
│   │   ├── orthorectifiedLon.img
│   │   ├── q_ifg_VH_10Oct2018_10Oct2018.hdr
│   │   ├── q_ifg_VH_10Oct2018_10Oct2018.img
│   │   ├── q_ifg_VV_10Oct2018_10Oct2018.hdr
│   │   ├── q_ifg_VV_10Oct2018_10Oct2018.img
│   │   ├── tgp_VH_10Oct2018_10Oct2018.hdr
│   │   ├── tgp_VH_10Oct2018_10Oct2018.img
│   │   ├── tgp_VV_10Oct2018_10Oct2018.hdr
│   │   ├── tgp_VV_10Oct2018_10Oct2018.img
│   │   ├── tie_point_grids
│   │   └── vector_data
│   ├── ifg_gc_20181010_20230710.dim
│   ├── incid_angle.hdr
│   ├── incid_angle.img
│   ├── incident_angle.hdr
│   ├── incident_angle.img
│   ├── orthorectifiedLat.hdr
│   ├── orthorectifiedLat.img
│   ├── orthorectifiedLon.hdr
│   ├── orthorectifiedLon.img
├── baselines.csv
├── baselines_filtered.csv
├── process_log.csv

OpenDataCube data indexing

The generated data stack can be indexed in OpenDataCube with the following instructions. Run the following commands in the ODC folder.

  1. Since ODC doesn't allow to index not-georeferenced data, or data on an irregular grid, we generate VRTs https://gdal.org/drivers/raster/vrt.html , assigning to each file a fake projection. Please modify the script with your paths and then run it:
python prepare_sar2cube_vrts.py
  1. With the generated VRTs, we can create the corresponding ODC dataset files. You can do so using the script: prepare_sar2cube_datasets.py:
python prepare_sar2cube_datasets.py --help
usage: prepare_sar2cube_datasets.py [-h] [-t TEMPLATE] [-p PRODUCT] [-b BASELINES] [-o OVERWRITE] source target

Create the eo3 ODC datasets files given a folder with the VRTs. Each VRTs must have a single band.

positional arguments:
  source                               Path to the input folder with VRTs files.
  target                               Path to write the output datasets files.

optional arguments:
  -h, --help                           show this help message and exit
  -t TEMPLATE, --template TEMPLATE     Path to the template yaml dataset file.
  -p PRODUCT, --product PRODUCT        Path to the yaml product file.
  -b BASELINES, --baselines BASELINES  Path to the baselines file.
  -o OVERWRITE, --overwrite OVERWRITE  Overwrite the destination file if already exists. (default: 0).

Author: Michele Claus, [email protected]
  1. You can finally add the product to ODC:
datacube product add SAR2Cube_ASC_117_datacube.yaml
  1. Add the datasets to the product:
find ./datasets/ -type f -name "*.yaml"| xargs --max-procs=8 -n1 datacube dataset add -p SAR2Cube_ASC_117_datacube