Skip to content

Commit

Permalink
Samples: Automatic updates to public repository
Browse files Browse the repository at this point in the history
Remember to do the following:
    1. Ensure that modified/deleted/new files are correct
    2. Make this commit message relevant for the changes
    3. Force push
    4. Delete branch after PR is merged

If this commit is an update from one SDK version to another,
make sure to create a release tag for previous version.
  • Loading branch information
csu-bot-zivid committed Aug 6, 2024
1 parent 9794841 commit b10c9d7
Show file tree
Hide file tree
Showing 12 changed files with 89 additions and 89 deletions.
10 changes: 5 additions & 5 deletions source/applications/advanced/get_checkerboard_pose_from_zdf.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ def _visualize_checkerboard_point_cloud_with_coordinate_system(
Args:
point_cloud_open3d: An Open3d point cloud of a checkerboard
transform: Transformation matrix
transform: Transformation matrix (4x4)
"""
coord_system_mesh = o3d.geometry.TriangleMesh.create_coordinate_frame(size=30)
Expand All @@ -72,18 +72,18 @@ def _main() -> None:
point_cloud = frame.point_cloud()

print("Detecting checkerboard and estimating its pose in camera frame")
transform_camera_to_checkerboard = zivid.calibration.detect_calibration_board(frame).pose().to_matrix()
print(f"Camera pose in checkerboard frame:\n{transform_camera_to_checkerboard}")
camera_to_checkerboard_transform = zivid.calibration.detect_calibration_board(frame).pose().to_matrix()
print(f"Camera pose in checkerboard frame:\n{camera_to_checkerboard_transform}")

transform_file_name = "CameraToCheckerboardTransform.yaml"
print(f"Saving detected checkerboard pose to YAML file: {transform_file_name}")
transform_file_path = Path(__file__).parent / transform_file_name
assert_affine_matrix_and_save(transform_camera_to_checkerboard, transform_file_path)
assert_affine_matrix_and_save(camera_to_checkerboard_transform, transform_file_path)

print("Visualizing checkerboard with coordinate system")
checkerboard_point_cloud = _create_open3d_point_cloud(point_cloud)
_visualize_checkerboard_point_cloud_with_coordinate_system(
checkerboard_point_cloud, transform_camera_to_checkerboard
checkerboard_point_cloud, camera_to_checkerboard_transform
)


Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ def _get_frame_and_transform(robot: Item, camera: zivid.Camera) -> Tuple[zivid.F
Returns:
Zivid frame
4x4 transformation matrix
Transformation matrix (4x4)
"""
frame = _assisted_capture(camera)
Expand All @@ -77,7 +77,7 @@ def _save_point_cloud_and_pose(
save_directory: Path to where data will be saved
image_and_pose_iterator: Image number
frame: Point cloud stored as ZDF
transform: 4x4 transformation matrix
transform: Transformation matrix (4x4)
"""
frame.save(save_directory / f"img{image_and_pose_iterator:02d}.zdf")
Expand Down Expand Up @@ -143,7 +143,7 @@ def _save_hand_eye_results(save_directory: Path, transform: np.ndarray, residual
Args:
save_directory: Path to where data will be saved
transform: 4x4 transformation matrix
transform: Transformation matrix (4x4)
residuals: List of residuals
"""
Expand Down Expand Up @@ -232,7 +232,7 @@ def perform_hand_eye_calibration(
user_options: Input arguments
Returns:
transform: 4x4 transformation matrix
transform: Transformation matrix (4x4)
residuals: List of residuals
Raises:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -127,7 +127,7 @@ def _save_zdf_and_pose(save_dir: Path, image_num: int, frame: zivid.Frame, trans
save_dir: Directory to save data
image_num: Image number
frame: Point cloud stored as ZDF
transform: 4x4 transformation matrix
transform: Transformation matrix (4x4)
"""
frame.save(save_dir / f"img{image_num:02d}.zdf")
Expand Down Expand Up @@ -164,7 +164,7 @@ def _get_frame_and_transform_matrix(
Returns:
frame: Zivid frame
transform: 4x4 transformation matrix
transform: Transformation matrix (4x4)
"""
frame = camera.capture(settings)
Expand Down Expand Up @@ -222,7 +222,7 @@ def _save_hand_eye_results(save_dir: Path, transform: np.ndarray, residuals: Lis
Args:
save_dir: Path to where data will be saved
transform: 4x4 transformation matrix
transform: Transformation matrix (4x4)
residuals: List of residuals
"""
Expand Down Expand Up @@ -392,7 +392,7 @@ def perform_hand_eye_calibration(
data_dir: Path to dataset
Returns:
transform: 4x4 transformation matrix
transform: Transformation matrix (4x4)
residuals: List of residuals
Raises:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ def _main() -> None:
eye_to_hand_transform_file_path = get_sample_data_path() / "EyeToHandTransform.yaml"

print("Reading camera pose in robot base reference frame (result of eye-to-hand calibration)")
transform_base_to_camera = load_and_assert_affine_matrix(eye_to_hand_transform_file_path)
base_to_camera_transform = load_and_assert_affine_matrix(eye_to_hand_transform_file_path)

break

Expand All @@ -71,13 +71,13 @@ def _main() -> None:
print(
"Reading camera pose in flange (end-effector) reference frame (result of eye-in-hand calibration)"
)
transform_flange_to_camera = load_and_assert_affine_matrix(eye_in_hand_transform_file_path)
flange_to_camera_transform = load_and_assert_affine_matrix(eye_in_hand_transform_file_path)

print("Reading flange (end-effector) pose in robot base reference frame")
transform_base_to_flange = load_and_assert_affine_matrix(robot_transform_file_path)
base_to_flange_transform = load_and_assert_affine_matrix(robot_transform_file_path)

print("Computing camera pose in robot base reference frame")
transform_base_to_camera = np.matmul(transform_base_to_flange, transform_flange_to_camera)
base_to_camera_transform = np.matmul(base_to_flange_transform, flange_to_camera_transform)

break

Expand Down Expand Up @@ -107,7 +107,7 @@ def _main() -> None:
print(f"Point coordinates in camera reference frame: {point_in_camera_frame[0:3]}")

print("Transforming (picking) point from camera to robot base reference frame")
point_in_base_frame = np.matmul(transform_base_to_camera, point_in_camera_frame)
point_in_base_frame = np.matmul(base_to_camera_transform, point_in_camera_frame)

print(f"Point coordinates in robot base reference frame: {point_in_base_frame[0:3]}")

Expand All @@ -116,7 +116,7 @@ def _main() -> None:
if command.lower() == "p":
print("Transforming point cloud")

point_cloud.transform(transform_base_to_camera)
point_cloud.transform(base_to_camera_transform)

save_file = "ZividGemTransformed.zdf"
print(f"Saving point cloud to file: {save_file}")
Expand Down
24 changes: 13 additions & 11 deletions source/applications/advanced/reproject_points.py
Original file line number Diff line number Diff line change
Expand Up @@ -36,23 +36,23 @@ def _checkerboard_grid() -> List[np.ndarray]:
return list(points)


def _transform_grid_to_calibration_board(
grid: List[np.ndarray], transform_camera_to_checkerboard: np.ndarray
def _transform_grid_to_camera_frame(
grid: List[np.ndarray], camera_to_checkerboard_transform: np.ndarray
) -> List[np.ndarray]:
"""Transform a list of grid points to the camera frame.
Args:
grid: List of 4D points (X,Y,Z,W) for each corner in the checkerboard, in the checkerboard frame
transform_camera_to_checkerboard: 4x4 transformation matrix
camera_to_checkerboard_transform: 4x4 transformation matrix
Returns:
List of 3D grid points in the camera frame
"""
points_in_camera_frame = []
for point in grid:
transformed_point = transform_camera_to_checkerboard @ point
points_in_camera_frame.append(transformed_point[:3])
for point_in_checkerboard_frame in grid:
point_in_camera_frame = camera_to_checkerboard_transform @ point_in_checkerboard_frame
points_in_camera_frame.append(point_in_camera_frame[:3])

return points_in_camera_frame

Expand Down Expand Up @@ -87,17 +87,19 @@ def _main() -> None:
raise RuntimeError("Calibration board not detected!")

print("Estimating checkerboard pose")
transform_camera_to_checkerboard = detection_result.pose().to_matrix()
print(transform_camera_to_checkerboard)
camera_to_checkerboard_transform = detection_result.pose().to_matrix()
print(camera_to_checkerboard_transform)

print("Creating a grid of 7 x 6 points (3D) with 30 mm spacing to match checkerboard corners")
grid = _checkerboard_grid()
grid_points_in_checkerboard_frame = _checkerboard_grid()

print("Transforming the grid to the camera frame")
points_in_camera_frame = _transform_grid_to_calibration_board(grid, transform_camera_to_checkerboard)
grid_points_in_camera_frame = _transform_grid_to_camera_frame(
grid_points_in_checkerboard_frame, camera_to_checkerboard_transform
)

print("Getting projector pixels (2D) corresponding to points (3D) in the camera frame")
projector_pixels = zivid.projection.pixels_from_3d_points(camera, points_in_camera_frame)
projector_pixels = zivid.projection.pixels_from_3d_points(camera, grid_points_in_camera_frame)

print("Retrieving the projector resolution that the camera supports")
projector_resolution = zivid.projection.projector_resolution(camera)
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ def _options() -> argparse.Namespace:
parser.add_argument(
"--tool-yaml",
required=True,
help="Path to YAML file that contains the tool tip to robot flange transformation matrix",
help="Path to YAML file that contains the tool tip transformation matrix (tool tip in robot flange frame)",
)
parser.add_argument(
"--hand-eye-yaml",
Expand Down Expand Up @@ -78,7 +78,7 @@ def _transform_points(points: List[np.ndarray], transform: np.ndarray) -> List[n
Args:
points: List of 3D points to be transformed
transform: Homogenous transform (4x4)
transform: Transformation matrix (4x4)
Returns:
List of transformed 3D points
Expand Down Expand Up @@ -127,13 +127,13 @@ def _zivid_logo_from_grid() -> List[int]:


def _generate_tool_poses_from_checkerboard(
camera: zivid.Camera, camera_to_base_transform: np.ndarray
camera: zivid.Camera, base_to_camera_transform: np.ndarray
) -> List[np.ndarray]:
"""Generate a tool path as a list of poses in the camera frame using the checkerboard.
Args:
camera: Zivid camera
camera_to_base_transform: Homogenous transform (4x4) from the camera frame to the robot base
base_to_camera_transform: Camera pose in robot base frame (4x4)
Raises:
RuntimeError: If the calibration board is not detected
Expand All @@ -146,12 +146,12 @@ def _generate_tool_poses_from_checkerboard(
if not detection_result.valid():
raise RuntimeError("Calibration board not detected!")

checkerboard_to_camera_transform = detection_result.pose().to_matrix()
checkerboard_to_base_transform = camera_to_base_transform @ checkerboard_to_camera_transform
camera_to_checkerboard_transform = detection_result.pose().to_matrix()
base_to_checkerboard_transform = base_to_camera_transform @ camera_to_checkerboard_transform

grid_points = _checkerboard_grid()
grid_points_in_base_frame = _transform_points(grid_points, checkerboard_to_base_transform)
grid_poses_in_base_frame = _points_to_poses(grid_points_in_base_frame, checkerboard_to_base_transform[:3, :3])
grid_points_in_checkerboard_frame = _checkerboard_grid()
grid_points_in_base_frame = _transform_points(grid_points_in_checkerboard_frame, base_to_checkerboard_transform)
grid_poses_in_base_frame = _points_to_poses(grid_points_in_base_frame, base_to_checkerboard_transform[:3, :3])

tool_poses_in_base_frame = [grid_poses_in_base_frame[idx] for idx in _zivid_logo_from_grid()]

Expand Down Expand Up @@ -242,25 +242,25 @@ def _main() -> None:
camera = app.connect_camera()

print("Generating tool path from the checkerboard")
tool_to_flange_transform = load_and_assert_affine_matrix(user_options.tool_yaml)
flange_to_base_transform = np.array(robot.Pose()).T
flange_to_tcp_transform = load_and_assert_affine_matrix(user_options.tool_yaml)
base_to_flange_transform = np.array(robot.Pose()).T

if user_options.eih:
camera_to_flange_transform = load_and_assert_affine_matrix(user_options.hand_eye_yaml)
camera_to_base_transform = flange_to_base_transform @ camera_to_flange_transform
flange_to_camera_transform = load_and_assert_affine_matrix(user_options.hand_eye_yaml)
base_to_camera_transform = base_to_flange_transform @ flange_to_camera_transform
else:
camera_to_base_transform = load_and_assert_affine_matrix(user_options.hand_eye_yaml)
base_to_camera_transform = load_and_assert_affine_matrix(user_options.hand_eye_yaml)

tool_poses_in_robot_base = _generate_tool_poses_from_checkerboard(camera, camera_to_base_transform)
flange_poses_in_robot_base = [
tool_pose_in_robot_base @ np.linalg.inv(tool_to_flange_transform)
for tool_pose_in_robot_base in tool_poses_in_robot_base
tool_poses_in_base_frame = _generate_tool_poses_from_checkerboard(camera, base_to_camera_transform)
flange_poses_in_base_frame = [
tool_pose_in_base_frame @ np.linalg.inv(flange_to_tcp_transform)
for tool_pose_in_base_frame in tool_poses_in_base_frame
]

print("Displaying the tool path on the checkerboard")
tool_poses_in_camera_frame = [
np.linalg.inv(camera_to_base_transform) @ tool_pose_in_robot_base
for tool_pose_in_robot_base in tool_poses_in_robot_base
np.linalg.inv(base_to_camera_transform) @ tool_pose_in_base_frame
for tool_pose_in_base_frame in tool_poses_in_base_frame
]

projector_image = _projected_tool_path(camera, tool_poses_in_camera_frame)
Expand All @@ -270,9 +270,9 @@ def _main() -> None:
if user_options.eih:
projected_image_handle.stop()

_approach_target_pose(robot, flange_poses_in_robot_base[0], offset=np.array([0, 0, -100]))
_approach_target_pose(robot, flange_poses_in_base_frame[0], offset=np.array([0, 0, -100]))

_follow_linear_path(robot, flange_poses_in_robot_base)
_follow_linear_path(robot, flange_poses_in_base_frame)

robot.MoveJ(robot.JointsHome())

Expand Down
6 changes: 3 additions & 3 deletions source/applications/advanced/roi_box_via_aruco_marker.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ def _transform_points(points: List[np.ndarray], transform: np.ndarray) -> List[n
Args:
points: list of 3D points to be transformed
transform: homogenous transform (4x4)
transform: homogenous transformation matrix (4x4)
Returns:
transformed_points: list of transformed 3D points
Expand Down Expand Up @@ -88,12 +88,12 @@ def _main() -> None:
raise RuntimeError("No ArUco markers detected")

print("Estimating pose of detected ArUco marker")
transform_camera_to_marker = detection_result.detected_markers()[0].pose.to_matrix()
camera_to_marker_transform = detection_result.detected_markers()[0].pose.to_matrix()

print("Transforming the ROI base frame points to the camera frame")
roi_points_in_camera_frame = _transform_points(
[point_o_in_aruco_frame, point_a_in_aruco_frame, point_b_in_aruco_frame],
transform_camera_to_marker,
camera_to_marker_transform,
)

print("Setting the ROI")
Expand Down
6 changes: 3 additions & 3 deletions source/applications/advanced/roi_box_via_checkerboard.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@ def _transform_points(points: List[np.ndarray], transform: np.ndarray) -> List[n
Args:
points: list of 3D points to be transformed
transform: homogenous transform (4x4)
transform: homogenous transformation matrix (4x4)
Returns:
transformed_points: list of transformed 3D points
Expand Down Expand Up @@ -79,12 +79,12 @@ def _main() -> None:

print("Detecting and estimating pose of the Zivid checkerboard in the camera frame")
detection_result = zivid.calibration.detect_feature_points(original_frame)
transform_camera_to_checkerboard = detection_result.pose().to_matrix()
camera_to_checkerboard_transform = detection_result.pose().to_matrix()

print("Transforming the ROI base frame points to the camera frame")
roi_points_in_camera_frame = _transform_points(
[point_o_in_checkerboard_frame, point_a_in_checkerboard_frame, point_b_in_checkerboard_frame],
transform_camera_to_checkerboard,
camera_to_checkerboard_transform,
)

print("Setting the ROI")
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,7 @@ def _get_coordinate_system_points(
}


def _draw_coordinae_system(frame: zivid.Frame, checkerboard_pose: np.ndarray, bgra_image: np.ndarray) -> None:
def _draw_coordinate_system(frame: zivid.Frame, checkerboard_pose: np.ndarray, bgra_image: np.ndarray) -> None:
"""Draw a coordinate system on a BGRA image.
Args:
Expand Down Expand Up @@ -164,24 +164,24 @@ def _main() -> None:

print("Detecting and estimating pose of the Zivid checkerboard in the camera frame")
detection_result = zivid.calibration.detect_calibration_board(frame)
transform_camera_to_checkerboard = detection_result.pose().to_matrix()
print(transform_camera_to_checkerboard)
camera_to_checkerboard_transform = detection_result.pose().to_matrix()
print(camera_to_checkerboard_transform)
print("Camera pose in checkerboard frame:")
transform_checkerboard_to_camera = np.linalg.inv(transform_camera_to_checkerboard)
print(transform_checkerboard_to_camera)
checkerboard_to_camera_transform = np.linalg.inv(camera_to_checkerboard_transform)
print(checkerboard_to_camera_transform)

transform_file = Path("CheckerboardToCameraTransform.yaml")
print("Saving a YAML file with Inverted checkerboard pose to file: ")
assert_affine_matrix_and_save(transform_checkerboard_to_camera, transform_file)
assert_affine_matrix_and_save(checkerboard_to_camera_transform, transform_file)

print("Transforming point cloud from camera frame to Checkerboard frame")
point_cloud.transform(transform_checkerboard_to_camera)
point_cloud.transform(checkerboard_to_camera_transform)

print("Converting to OpenCV image format")
bgra_image = point_cloud.copy_data("bgra")

print("Visualizing checkerboard with coordinate system")
_draw_coordinae_system(frame, transform_camera_to_checkerboard, bgra_image)
_draw_coordinate_system(frame, camera_to_checkerboard_transform, bgra_image)
display_bgr(bgra_image, "Checkerboard transformation frame")

checkerboard_transformed_file = "CalibrationBoardInCheckerboardOrigin.zdf"
Expand Down
Loading

0 comments on commit b10c9d7

Please sign in to comment.