Skip to content

Latest commit

 

History

History
 
 

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deep-Learning-with-PyTorch-Chinese

本项目(网页版传送门)将PyTorch官方书籍《Deep learning with PyTorch》(基本摘录版)翻译成中文并给出全书可运行的相关代码。

This project translates the PyTorch official book "Deep learning with PyTorch" (essential excerpt version) into Chinese.

cover

1. 书籍简介

自 2016 年诞生以来,PyTorch 已经成为当今最火热的深度学习框架之一。最近,官方权威的 PyTorch 教程书《Deep learning with PyTorch》终于问世了,消息一出就获得巨佬 Yann LeCun 力荐,是入门PyTorch及深度学习的绝佳教材。

twitter

需要注意的是,PyTorch官网提供的PDF是基本摘录版(Essential Excerpts),共141页,内容包括以下五个部分:

  1. 深度学习与PyTorch简介
  2. 从一个张量开始
  3. 使用张量表示真实数据
  4. 学习机制
  5. 使用神经网络拟合数据

因此可作为快速入门PyTorch的教程。此书完整版目前也可免费预览,传送门

2. 项目简介

本项目将原书翻译成中文并且给出可运行的相关代码。

仓库主要包含code和docs两个文件夹(外加一些数据存放在data中)。其中code文件夹就是每章相关jupyter notebook代码;docs文件夹就是markdown格式的《Deep learning with PyTorch》(基本摘录版)书中的相关内容的中文翻译,然后利用docsify将网页文档部署到GitHub Pages上。欢迎对本项目做出贡献或提出issue。

3. 使用方法

本项目面向对PyTorch感兴趣,尤其是想快速入门PyTorch的童鞋。本项目并不要求你有任何深度学习或者机器学习的背景知识,你只需了解基础的数学和编程,如基础的线性代数、微分和概率,以及基础的Python编程。

本仓库的文档包含一些latex公式,但github的markdown原生是不支持公式显示的,而docs文件夹已经利用docsify被部署到了GitHub Pages上,所以你可以方便地访问本项目网页版。如果你想跑一下相关代码的话需要把本项目clone下来,然后运行code文件夹下相关代码。

由于本项目所翻译的是基本摘录版,仅141页,所以适合快速入门PyTorch。如果你想对PyTorch以及深度学习(例如计算机视觉、自然语言处理等)有更深入的学习,可能还需要更多的资料,感兴趣的可以参考我的另一个项目Dive-into-DL-PyTorch

4. 目录

5. 声明

  • 译者纯粹出于学习目的与个人兴趣而进行翻译,不追求任何经济利益;
  • 本项目仅限于学习研究目的的使用,译者保留对此项目的署名权,任何转载必须注明出处,但不得用于任何商业用途;
  • 使用本项目对原著的侵权行为或者违反知识产权保护法的任何行为,与译者无关;
  • 有能力阅读英文书籍者请阅读原版或购买完整版书籍。

LICENSE

CC BY-NC(署名-非商业性使用)4.0