Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Create Int8 Calibrating, borrow from tensorrt #297

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
332 changes: 332 additions & 0 deletions tools/tensorrt_int8_calibrating.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,332 @@
#
# Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

import os
import sys

sys.path.append("./")

import argparse
import logging
import traceback

import numpy as np
import pycuda.autoinit # noqa
import pycuda.driver as cuda
import tensorrt as trt
from yolort.v5.utils.datasets import LoadImages

logging.basicConfig(level=logging.INFO)
logging.getLogger("EngineBuilder").setLevel(logging.INFO)
log = logging.getLogger("EngineBuilder")


# Define some parameters
img_size = [320, 320]
stride = 32
score_thresh = 0.35
iou_thresh = 0.45
detections_per_img = 100
half = False
img_source = "val2017/"


class ImageBatcher:
def __init__(self, calib_shape=None, calib_dtype=None) -> None:
self.dataset = LoadImages(img_source, img_size=img_size, stride=stride, auto=False)
self.dtype = calib_dtype
self.batch_size = 1
self.shape = (self.batch_size, 3, *calib_shape)
self.num_images = len(self.dataset)
self.image_index = 0

def get_batch(
self,
):
return iter(self.dataset)


class EngineCalibrator(trt.IInt8EntropyCalibrator2):
"""
Implements the INT8 Entropy Calibrator 2.
"""

def __init__(self, cache_file):
"""

Args:
cache_file: The location of the cache file.
"""
super().__init__()
self.cache_file = cache_file
self.image_batcher: ImageBatcher = None
self.batch_allocation = None
self.batch_generator = None

def set_image_batcher(self, image_batcher: ImageBatcher):
"""
Define the image batcher to use, if any. If using only the cache file, an
image batcher doesn't need to be defined.

Args:
image_batcher: The ImageBatcher object
"""
self.image_batcher = image_batcher
size = int(np.dtype(self.image_batcher.dtype).itemsize * np.prod(self.image_batcher.shape))
self.batch_allocation = cuda.mem_alloc(size)
self.batch_generator = self.image_batcher.get_batch()

def get_batch_size(self):
"""
Overrides from trt.IInt8EntropyCalibrator2.
Get the batch size to use for calibration.

Returns:
Batch size.
"""
if self.image_batcher:
return self.image_batcher.batch_size
return 1

def get_batch(self, names):
"""
Overrides from trt.IInt8EntropyCalibrator2.
Get the next batch to use for calibration, as a list of device memory pointers.

Args:
names: The names of the inputs, if useful to define the order of inputs.

Returns:
A list of int-casted memory pointers.
"""
if not self.image_batcher:
return None

log.info("Calibrating image ...")
try:
path, image, img_raw, _, s = next(self.batch_generator)
image = image[np.newaxis, :, :, :]
batch, _, _, _ = image.shape
self.image_batcher.image_index += 1

log.info(
"Calibrating image {} / {}".format(
self.image_batcher.image_index, self.image_batcher.num_images
)
)
cuda.memcpy_htod(self.batch_allocation, np.ascontiguousarray(batch))
return [int(self.batch_allocation)]
except StopIteration:
log.info("Finished calibration batches")
return None
except Exception:
traceback.print_exc()

def read_calibration_cache(self):
"""
Overrides from trt.IInt8EntropyCalibrator2.
Read the calibration cache file stored on disk, if it exists.

Returns:
The contents of the cache file, if any.
"""
if os.path.exists(self.cache_file):
with open(self.cache_file, "rb") as f:
log.info("Using calibration cache file: {}".format(self.cache_file))
return f.read()

def write_calibration_cache(self, cache):
"""
Overrides from trt.IInt8EntropyCalibrator2.
Store the calibration cache to a file on disk.

Args:
cache: The contents of the calibration cache to store.
"""
with open(self.cache_file, "wb") as f:
log.info("Writing calibration cache data to: {}".format(self.cache_file))
f.write(cache)


class EngineBuilder:
"""
Parses an ONNX graph and builds a TensorRT engine from it.
"""

def __init__(self, verbose=False):
"""

Args:
verbose: If enabled, a higher verbosity level will be set on the TensorRT logger.
"""
self.trt_logger = trt.Logger(trt.Logger.INFO)
if verbose:
self.trt_logger.min_severity = trt.Logger.Severity.VERBOSE

trt.init_libnvinfer_plugins(self.trt_logger, namespace="")

self.builder = trt.Builder(self.trt_logger)
self.config = self.builder.create_builder_config()
self.config.max_workspace_size = 8 * (2 ** 30) # 8 GB

self.batch_size = None
self.network = None
self.parser = None

def create_network(self, onnx_path):
"""
Parse the ONNX graph and create the corresponding TensorRT network definition.

Args:
onnx_path: The path to the ONNX graph to load.
"""
network_flags = 1 << int(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH)

self.network = self.builder.create_network(network_flags)
self.parser = trt.OnnxParser(self.network, self.trt_logger)

onnx_path = os.path.realpath(onnx_path)
with open(onnx_path, "rb") as f:
if not self.parser.parse(f.read()):
log.error("Failed to load ONNX file: {}".format(onnx_path))
for error in range(self.parser.num_errors):
log.error(self.parser.get_error(error))
sys.exit(1)

inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)]
outputs = [self.network.get_output(i) for i in range(self.network.num_outputs)]

log.info("Network Description")
for input in inputs:
self.batch_size = input.shape[0]
log.info("Input '{}' with shape {} and dtype {}".format(input.name, input.shape, input.dtype))
for output in outputs:
log.info("Output '{}' with shape {} and dtype {}".format(output.name, output.shape, output.dtype))
assert self.batch_size > 0
self.builder.max_batch_size = self.batch_size

def create_engine(
self,
engine_path,
precision,
calib_input=None,
calib_cache=None,
calib_num_images=25000,
calib_batch_size=8,
calib_preprocessor=None,
):
"""
Build the TensorRT engine and serialize it to disk.

Args:
engine_path: The path where to serialize the engine to.
precision: The datatype to use for the engine, either 'fp32', 'fp16' or 'int8'.
calib_input: The path to a directory holding the calibration images.
calib_cache: The path where to write the calibration cache to, or if it already
exists, load it from.
calib_num_images: The maximum number of images to use for calibration.
calib_batch_size: The batch size to use for the calibration process.
calib_preprocessor: The ImageBatcher preprocessor algorithm to use.
"""
engine_path = os.path.realpath(engine_path)
engine_dir = os.path.dirname(engine_path)
os.makedirs(engine_dir, exist_ok=True)
log.info("Building {} Engine in {}".format(precision, engine_path))

inputs = [self.network.get_input(i) for i in range(self.network.num_inputs)]

if precision == "fp16":
if not self.builder.platform_has_fast_fp16:
log.warning("FP16 is not supported natively on this platform/device")
else:
self.config.set_flag(trt.BuilderFlag.FP16)
elif precision == "int8":
if not self.builder.platform_has_fast_int8:
log.warning("INT8 is not supported natively on this platform/device")
else:
self.config.set_flag(trt.BuilderFlag.INT8)
self.config.int8_calibrator = EngineCalibrator(calib_cache)
if not os.path.exists(calib_cache):
calib_shape = [calib_batch_size] + list(inputs[0].shape[1:])
calib_dtype = trt.nptype(inputs[0].dtype)
self.config.int8_calibrator.set_image_batcher(ImageBatcher(calib_shape, calib_dtype))

with self.builder.build_engine(self.network, self.config) as engine:
with open(engine_path, "wb") as f:
log.info("Serializing engine to file: {:}".format(engine_path))
f.write(engine.serialize())


def main(args):
builder = EngineBuilder(args.verbose)
builder.create_network(args.onnx)
builder.create_engine(
args.engine,
args.precision,
args.calib_input,
args.calib_cache,
args.calib_num_images,
args.calib_batch_size,
args.calib_preprocessor,
)


if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("-o", "--onnx", help="The input ONNX model file to load")
parser.add_argument("-e", "--engine", help="The output path for the TRT engine")
parser.add_argument(
"-p",
"--precision",
default="fp16",
choices=["fp32", "fp16", "int8"],
help="The precision mode to build in, either 'fp32', 'fp16' or 'int8', default: 'fp16'",
)
parser.add_argument("-v", "--verbose", action="store_true", help="Enable more verbose log output")
parser.add_argument("--calib_input", help="The directory holding images to use for calibration")
parser.add_argument(
"--calib_cache",
default="./calibration.cache",
help="The file path for INT8 calibration cache to use, default: ./calibration.cache",
)
parser.add_argument(
"--calib_num_images",
default=10,
type=int,
help="The maximum number of images to use for calibration, default: 25000",
)
parser.add_argument(
"--calib_batch_size",
default=1,
type=int,
help="The batch size for the calibration process, default: 1",
)
parser.add_argument(
"--calib_preprocessor",
default="V2",
choices=["V1", "V1MS", "V2"],
help="Set the calibration image preprocessor to use, either 'V2', 'V1' or 'V1MS', default: V2",
)
args = parser.parse_args()
if not all([args.onnx, args.engine]):
parser.print_help()
log.error("These arguments are required: --onnx and --engine")
sys.exit(1)
if args.precision == "int8" and not any([args.calib_input, args.calib_cache]):
parser.print_help()
log.error("When building in int8 precision, either --calib_input or --calib_cache are required")
sys.exit(1)
main(args)