Training and Tuning Generative Neural Radiance Fields for Attribute-Conditional 3D-Aware Face Generation
Jichao Zhang, Aliaksandr Siarohin, Yahui Liu, Hao Tang,
Nicu Sebe, Wei Wang
Demo-Video
Ocean University of China, Snap Research, Huawei, Peking University, University of Trento, Beijing Jiaotong University
conda create -n ttgnerf python=3.6
pip install -r req.txt
Please edit the file training/loss.py to change the path of BiSeNet model. You can download BiSeBet from the given pretrained model path.
python test_kmeans.py --outdir=[output_path] \
--network=[pretrained eg3d model] \
--dataset_path [our dataset path] \
--csvpath [label path] \
--batch=1 \
--gen_pose_cond=True \
--resolution 512 \
--label_dim 6 \
--truncation_psi 0.7 \
--file_id 66 \
--lambda_normal 1.0
python test_editing_triot.py --outdir=[output_path] \
--network=[pretrained eg3d model] \
--dataset_path [our dataset path] \
--csvpath [label path] \
--cnf_path=[cnf pretrained model path] \
--mask_path=[output_path_mask] \
--batch=1 \
--gen_pose_cond=True \
--resolution 512 \
--label_dim 6 \
--truncation_psi 0.7 \
--scale 1.2 \
--finetune_id 0 \
--file_id 66 \
--num_steps 100 \
--lambda_normal 5.0 \
--norm_loss 0
python test_reference_geometry_editing.py --outdir=[output_path] --batch=1 \
--gen_pose_cond=True --num_steps 100 \
--faceid_weights [face_id_path] \
--w_dir [our dataset path] \
--resolution 512 --truncation_psi 0.7 --id 41 --ref_id 5235
If you have any questions/comments, feel free to open a github issue or pull a request or e-mail to the author Jichao Zhang ([email protected]).
We would like to thank EG3D and StyleFlow for providing such a great and powerful codebase.