Title & Authors | TL;DR | Links |
---|---|---|
LoRA: Low-Rank Adaptation of Large Language Models Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen |
|
Github Paper |
DoRA: Weight-Decomposed Low-Rank Adaptation Shih-Yang Liu, Chien-Yi Wang, Hongxu Yin, Pavlo Molchanov, Yu-Chiang Frank Wang, Kwang-Ting Cheng, Min-Hung Chen |
DoRA decomposes the pre-trained weight into two components, magnitude and direction, and LoRA adapts direction |
Github Paper |
VeRA: Vector-based Random Matrix Adaptation Dawid J. Kopiczko, Tijmen Blankevoort, Yuki M. Asano |
VeRA levereges random projection to further reduce the trainable parameters |
Github Paper |
AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning Qingru Zhang, Minshuo Chen, Alexander Bukharin, Nikos Karampatziakis, Pengcheng He, Yu Cheng, Weizhu Chen, Tuo Zhao |
Prune the singular values of unimportant updates |
Github Paper |
Mixture-of-Subspaces in Low-Rank Adaptation Taiqiang Wu, Jiahao Wang, Zhe Zhao, Ngai Wong |
|
Github Paper |
Title & Authors | TL;DR | Links |
---|---|---|
Controlling Text-to-Image Diffusion by Orthogonal Finetuning Zeju Qiu, Weiyang Liu, Haiwen Feng, Yuxuan Xue, Yao Feng, Zhen Liu, Dan Zhang, Adrian Weller, Bernhard Schölkopf |
|
Github Paper |
Parameter-Efficient Orthogonal Finetuning via Butterfly Factorization Weiyang Liu, Zeju Qiu, Yao Feng, Yuliang Xiu, Yuxuan Xue, Longhui Yu, Haiwen Feng, Zhen Liu, Juyeon Heo, Songyou Peng, Yandong Wen, Michael J. Black, Adrian Weller, Bernhard Schölkopf |
An efficient parametrization of |
Github Paper |
Parameter Efficient Quasi-Orthogonal Fine-Tuning via Givens Rotation Xinyu Ma, Xu Chu, Zhibang Yang, Yang Lin, Xin Gao, Junfeng Zhao |
Rotation matrix |
Github Paper |
Bridging The Gap between Low-rank and Orthogonal Adaptation via Householder Reflection Adaptation Shen Yuan, Haotian Liu, Hongteng Xu |
Rotation matrix |
Github Paper |
Title & Authors | TL;DR | Links |
---|---|---|
Asymmetry in Low-Rank Adapters of Foundation Models Jiacheng Zhu, Kristjan Greenewald, Kimia Nadjahi, Haitz Sáez de Ocáriz Borde, Rickard Brüel Gabrielsson, Leshem Choshen, Marzyeh Ghassemi, Mikhail Yurochkin, Justin Solomon |
Tuning B is more impactful than tuning A | Github Paper |