Skip to content

Dataset for paper "Weak Supervision for Fake News Detection via Reinforcement Learning" published in AAAI'2020.

Notifications You must be signed in to change notification settings

yaqingwang/WeFEND-AAAI20

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

39 Commits
 
 
 
 
 
 
 
 

Repository files navigation

WeFEND-AAAI20

Weak Supervision for Fake News Detection via Reinforcement Learning
Yaqing Wang, Weifeng Yang, Fenglong Ma, Jin Xu, Bin Zhong, Qiang Deng, Jing Gao

SUNY Buffalo & WeChat. AAAI, 2020.

Dataset

[2020-07-26] We collected more data and make it public. 


└── data/    
    └── train/
    └── test/
    └── unlabeled data/
   

Data Statistics

# of data # of fake news
train 10,587
2,743
test 10,141
1,482
unlabeled news 67,748
-

Data Description

Columns Description
Official Account Name The name of official account, news publisher
Title News Title
News Url The url of news
Image Url The url of cover image
Report Content The reports from reader, split by ##
label label of news, 0 is real and 1 is fake

Main Idea

Challenge:

Due to the dynamic nature of news, annotated samples may become outdated quickly and cannot represent the news articles on newly emerged events. Therefore, how to obtain fresh and high-quality labeled samples is the major challenge in employing deep learning models for fake news detection.

Solution:

We propose a reinforced weakly supervised fake news detection framework, i.e., WeFEND, which can leverage users’ reports as weak supervision source to enlarge the amount of training data for fake news detection.

Experiment

We aim to answer two important questions:

  • Does the distribution of news change with time?
  • why should we use the reports to annotate the fake news?

About

Dataset for paper "Weak Supervision for Fake News Detection via Reinforcement Learning" published in AAAI'2020.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published