Skip to content

tzxiang/wireframe

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Code of paper "Learning to Parse Wireframes in Images of Man-Made Environments", CVPR 2018

Folder/file Description
junc For training junction detector.
linepx For training straight line pixel detector.
wireframe.py Generate line segments/wireframe from predicted junctions and line pixels.
evaluation Evaluation of junctions and wireframes.

Requirements

  • python3
  • pytorch==0.3.1
  • opencv==3.3.1
  • scipy, numpy, progress, protobuf
  • joblib (for parallel processing data.)
  • tqdm
  • [optional] dominate

The code is written and tested in python3, please install all requirements in python3.

Prepare data

  • Download the training data.
    • Download imgs from OneDrive, put it in data/, unzip v1.1.zip.
    • Download annotation from OneDrive, put it in data/, unzip pointlines.zip.
  • Preprocess data.
    cd junc
    python3 main.py --create_dataset --exp 1 --json
    
    cd linepx
    python3 main.py --genLine
    

Note: --json means you put the hype-parameters in junc/hypes/1.json.

Training

  • train junction detector.

    cd junc
    python3 main.py --exp 1 --json --gpu 0 --balance
    
  • train line pixel detecor.

    cd linepx
    python3 main.py --netType stackedHGB --GPUs 0 --LR 0.001 --batchSize 4
    

Testing

  • Test junction detector.
    cd junc
    python3 main.py --exp 1 --json --test --checkepoch 16 --gpu 0 --balance
    
  • Test line pixel detector.
    cd linepx
    python3 main.py --netType stackedHGB --GPUs 0 --LR 0.001 --testOnly t
    
  • Combine junction and line pixel prediction.
    python wireframe.py
    

Evaluation

The code for evaluation is put in evaluation/junc and evaluation/wireframe. Expected precision/recall curve is like junction PR curve and wireframe PR curve.

Visualize the result

For visualizing the result, we recommend generating an html file using dominate to visualize the result of different methods in columns.

Citation

@InProceedings{wireframe_cvpr18,
author = {Kun Huang and Yifan Wang and Zihan Zhou and Tianjiao Ding and Shenghua Gao and Yi Ma},
title = {Learning to Parse Wireframes in Images of Man-Made Environments},
booktitle = {CVPR},
month = {June},
year = {2018}
}

License

You can use this code for your research and other usages, following BSD 2-Clause license. please credit our work when it helps you.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 98.1%
  • MATLAB 1.9%