Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Ad hoc versions of MinHeap, MaxHeap, and DisjointSet #1117

Merged
merged 5 commits into from
Mar 9, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 78 additions & 0 deletions src/data-structures/disjoint-set/DisjointSetAdhoc.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
/**
* The minimalistic (ad hoc) version of a DisjointSet (or a UnionFind) data structure
* that doesn't have external dependencies and that is easy to copy-paste and
* use during the coding interview if allowed by the interviewer (since many
* data structures in JS are missing).
*
* Time Complexity:
*
* - Constructor: O(N)
* - Find: O(α(N))
* - Union: O(α(N))
* - Connected: O(α(N))
*
* Where N is the number of vertices in the graph.
* α refers to the Inverse Ackermann function.
* In practice, we assume it's a constant.
* In other words, O(α(N)) is regarded as O(1) on average.
*/
class DisjointSetAdhoc {
/**
* Initializes the set of specified size.
* @param {number} size
*/
constructor(size) {
// The index of a cell is an id of the node in a set.
// The value of a cell is an id (index) of the root node.
// By default, the node is a parent of itself.
this.roots = new Array(size).fill(0).map((_, i) => i);

// Using the heights array to record the height of each node.
// By default each node has a height of 1 because it has no children.
this.heights = new Array(size).fill(1);
}

/**
* Finds the root of node `a`
* @param {number} a
* @returns {number}
*/
find(a) {
if (a === this.roots[a]) return a;
this.roots[a] = this.find(this.roots[a]);
return this.roots[a];
}

/**
* Joins the `a` and `b` nodes into same set.
* @param {number} a
* @param {number} b
* @returns {number}
*/
union(a, b) {
const aRoot = this.find(a);
const bRoot = this.find(b);

if (aRoot === bRoot) return;

if (this.heights[aRoot] > this.heights[bRoot]) {
this.roots[bRoot] = aRoot;
} else if (this.heights[aRoot] < this.heights[bRoot]) {
this.roots[aRoot] = bRoot;
} else {
this.roots[bRoot] = aRoot;
this.heights[aRoot] += 1;
}
}

/**
* Checks if `a` and `b` belong to the same set.
* @param {number} a
* @param {number} b
*/
connected(a, b) {
return this.find(a) === this.find(b);
}
}

export default DisjointSetAdhoc;
5 changes: 5 additions & 0 deletions src/data-structures/disjoint-set/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,11 @@ _MakeSet_ creates 8 singletons.

After some operations of _Union_, some sets are grouped together.

## Implementation

- [DisjointSet.js](./DisjointSet.js)
- [DisjointSetAdhoc.js](./DisjointSetAdhoc.js) - The minimalistic (ad hoc) version of a DisjointSet (or a UnionFind) data structure that doesn't have external dependencies and that is easy to copy-paste and use during the coding interview if allowed by the interviewer (since many data structures in JS are missing).

## References

- [Wikipedia](https://en.wikipedia.org/wiki/Disjoint-set_data_structure)
Expand Down
50 changes: 50 additions & 0 deletions src/data-structures/disjoint-set/__test__/DisjointSetAdhoc.test.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
import DisjointSetAdhoc from '../DisjointSetAdhoc';

describe('DisjointSetAdhoc', () => {
it('should create unions and find connected elements', () => {
const set = new DisjointSetAdhoc(10);

// 1-2-5-6-7 3-8-9 4
set.union(1, 2);
set.union(2, 5);
set.union(5, 6);
set.union(6, 7);

set.union(3, 8);
set.union(8, 9);

expect(set.connected(1, 5)).toBe(true);
expect(set.connected(5, 7)).toBe(true);
expect(set.connected(3, 8)).toBe(true);

expect(set.connected(4, 9)).toBe(false);
expect(set.connected(4, 7)).toBe(false);

// 1-2-5-6-7 3-8-9-4
set.union(9, 4);

expect(set.connected(4, 9)).toBe(true);
expect(set.connected(4, 3)).toBe(true);
expect(set.connected(8, 4)).toBe(true);

expect(set.connected(8, 7)).toBe(false);
expect(set.connected(2, 3)).toBe(false);
});

it('should keep the height of the tree small', () => {
const set = new DisjointSetAdhoc(10);

// 1-2-6-7-9 1 3 4 5
set.union(7, 6);
set.union(1, 2);
set.union(2, 6);
set.union(1, 7);
set.union(9, 1);

expect(set.connected(1, 7)).toBe(true);
expect(set.connected(6, 9)).toBe(true);
expect(set.connected(4, 9)).toBe(false);

expect(Math.max(...set.heights)).toBe(3);
});
});
115 changes: 115 additions & 0 deletions src/data-structures/heap/MaxHeapAdhoc.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,115 @@
/**
* The minimalistic (ad hoc) version of a MaxHeap data structure that doesn't have
* external dependencies and that is easy to copy-paste and use during the
* coding interview if allowed by the interviewer (since many data
* structures in JS are missing).
*/
class MaxHeapAdhoc {
constructor(heap = []) {
this.heap = [];
heap.forEach(this.add);
}

add(num) {
this.heap.push(num);
this.heapifyUp();
}

peek() {
return this.heap[0];
}

poll() {
if (this.heap.length === 0) return undefined;
const top = this.heap[0];
this.heap[0] = this.heap[this.heap.length - 1];
this.heap.pop();
this.heapifyDown();
return top;
}

isEmpty() {
return this.heap.length === 0;
}

toString() {
return this.heap.join(',');
}

heapifyUp() {
let nodeIndex = this.heap.length - 1;
while (nodeIndex > 0) {
const parentIndex = this.getParentIndex(nodeIndex);
if (this.heap[parentIndex] >= this.heap[nodeIndex]) break;
this.swap(parentIndex, nodeIndex);
nodeIndex = parentIndex;
}
}

heapifyDown() {
let nodeIndex = 0;

while (
(
this.hasLeftChild(nodeIndex) && this.heap[nodeIndex] < this.leftChild(nodeIndex)
)
|| (
this.hasRightChild(nodeIndex) && this.heap[nodeIndex] < this.rightChild(nodeIndex)
)
) {
const leftIndex = this.getLeftChildIndex(nodeIndex);
const rightIndex = this.getRightChildIndex(nodeIndex);
const left = this.leftChild(nodeIndex);
const right = this.rightChild(nodeIndex);

if (this.hasLeftChild(nodeIndex) && this.hasRightChild(nodeIndex)) {
if (left >= right) {
this.swap(leftIndex, nodeIndex);
nodeIndex = leftIndex;
} else {
this.swap(rightIndex, nodeIndex);
nodeIndex = rightIndex;
}
} else if (this.hasLeftChild(nodeIndex)) {
this.swap(leftIndex, nodeIndex);
nodeIndex = leftIndex;
}
}
}

getLeftChildIndex(parentIndex) {
return (2 * parentIndex) + 1;
}

getRightChildIndex(parentIndex) {
return (2 * parentIndex) + 2;
}

getParentIndex(childIndex) {
return Math.floor((childIndex - 1) / 2);
}

hasLeftChild(parentIndex) {
return this.getLeftChildIndex(parentIndex) < this.heap.length;
}

hasRightChild(parentIndex) {
return this.getRightChildIndex(parentIndex) < this.heap.length;
}

leftChild(parentIndex) {
return this.heap[this.getLeftChildIndex(parentIndex)];
}

rightChild(parentIndex) {
return this.heap[this.getRightChildIndex(parentIndex)];
}

swap(indexOne, indexTwo) {
const tmp = this.heap[indexTwo];
this.heap[indexTwo] = this.heap[indexOne];
this.heap[indexOne] = tmp;
}
}

export default MaxHeapAdhoc;
117 changes: 117 additions & 0 deletions src/data-structures/heap/MinHeapAdhoc.js
Original file line number Diff line number Diff line change
@@ -0,0 +1,117 @@
/**
* The minimalistic (ad hoc) version of a MinHeap data structure that doesn't have
* external dependencies and that is easy to copy-paste and use during the
* coding interview if allowed by the interviewer (since many data
* structures in JS are missing).
*/
class MinHeapAdhoc {
constructor(heap = []) {
this.heap = [];
heap.forEach(this.add);
}

add(num) {
this.heap.push(num);
this.heapifyUp();
}

peek() {
return this.heap[0];
}

poll() {
if (this.heap.length === 0) return undefined;
const top = this.heap[0];
this.heap[0] = this.heap[this.heap.length - 1];
this.heap.pop();
this.heapifyDown();
return top;
}

isEmpty() {
return this.heap.length === 0;
}

toString() {
return this.heap.join(',');
}

heapifyUp() {
let nodeIndex = this.heap.length - 1;
while (nodeIndex > 0) {
const parentIndex = this.getParentIndex(nodeIndex);
if (this.heap[parentIndex] <= this.heap[nodeIndex]) break;
this.swap(parentIndex, nodeIndex);
nodeIndex = parentIndex;
}
}

heapifyDown() {
let nodeIndex = 0;

while (
(
this.hasLeftChild(nodeIndex)
&& this.heap[nodeIndex] > this.leftChild(nodeIndex)
)
|| (
this.hasRightChild(nodeIndex)
&& this.heap[nodeIndex] > this.rightChild(nodeIndex)
)
) {
const leftIndex = this.getLeftChildIndex(nodeIndex);
const rightIndex = this.getRightChildIndex(nodeIndex);
const left = this.leftChild(nodeIndex);
const right = this.rightChild(nodeIndex);

if (this.hasLeftChild(nodeIndex) && this.hasRightChild(nodeIndex)) {
if (left <= right) {
this.swap(leftIndex, nodeIndex);
nodeIndex = leftIndex;
} else {
this.swap(rightIndex, nodeIndex);
nodeIndex = rightIndex;
}
} else if (this.hasLeftChild(nodeIndex)) {
this.swap(leftIndex, nodeIndex);
nodeIndex = leftIndex;
}
}
}

getLeftChildIndex(parentIndex) {
return 2 * parentIndex + 1;
}

getRightChildIndex(parentIndex) {
return 2 * parentIndex + 2;
}

getParentIndex(childIndex) {
return Math.floor((childIndex - 1) / 2);
}

hasLeftChild(parentIndex) {
return this.getLeftChildIndex(parentIndex) < this.heap.length;
}

hasRightChild(parentIndex) {
return this.getRightChildIndex(parentIndex) < this.heap.length;
}

leftChild(parentIndex) {
return this.heap[this.getLeftChildIndex(parentIndex)];
}

rightChild(parentIndex) {
return this.heap[this.getRightChildIndex(parentIndex)];
}

swap(indexOne, indexTwo) {
const tmp = this.heap[indexTwo];
this.heap[indexTwo] = this.heap[indexOne];
this.heap[indexOne] = tmp;
}
}

export default MinHeapAdhoc;
5 changes: 5 additions & 0 deletions src/data-structures/heap/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,11 @@ Where:

> In this repository, the [MaxHeap.js](./MaxHeap.js) and [MinHeap.js](./MinHeap.js) are examples of the **Binary** heap.

## Implementation

- [MaxHeap.js](./MaxHeap.js) and [MinHeap.js](./MinHeap.js)
- [MaxHeapAdhoc.js](./MaxHeapAdhoc.js) and [MinHeapAdhoc.js](./MinHeapAdhoc.js) - The minimalistic (ad hoc) version of a MinHeap/MaxHeap data structure that doesn't have external dependencies and that is easy to copy-paste and use during the coding interview if allowed by the interviewer (since many data structures in JS are missing).

## References

- [Wikipedia](https://en.wikipedia.org/wiki/Heap_(data_structure))
Expand Down
Loading
Loading