Skip to content

CodeT5 LLM fine-tuned with C++ code from KDE

License

Apache-2.0, BSD-3-Clause licenses found

Licenses found

Apache-2.0
LICENSE
BSD-3-Clause
LICENSE.CodeT5
Notifications You must be signed in to change notification settings

tm243/CodeT5-KDE

CodeT5 KDE

This model is a CodeT5 model fine-tuned with an example dataset from KDE-C++ code. You can find the dataset here:

https://www.opendocstring.com/tool/

and select full-dataset-KDE-kdeconnect-C++

You are encouraged to improve and extend the dataset.

Demo

Follow this link to try out the live model: https://www.opendocstring.com/#demo

Setup

Make yourself a folder and install the required Python packages:

virtualenv .env

source .env/bin/activate

pip install -r requirements.txt

Before you run the model you need to download the weights:

wget https://www.opendocstring.com/downloads/weights/codet5/saved-pretrained-kde-cpp-multisum-2023-05-10-06.tar.gz

and unpack them. Or use the script:

./download_weights.sh

The weights will be in api/saved-pretrained-kde-...

Run Inference

Inference Test

A python code example for inference:

python inference.py

Local Server

You can connect to this model via the REST api.

Run the local server:

uvicorn api.rest:app --port 7999 --reload

Make a POST request to get the summary of some code.

Browser

Open demo.html in your browser and paste some code. It will make requests to the local server you just started.

Python

import requests

result = requests.post('http://localhost:7999/summary', json={ 'code' : code })
summary = json.loads(result.text)['summary']

About

CodeT5 LLM fine-tuned with C++ code from KDE

Topics

Resources

License

Apache-2.0, BSD-3-Clause licenses found

Licenses found

Apache-2.0
LICENSE
BSD-3-Clause
LICENSE.CodeT5

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published