go-funk
is a modern Go library based on reflect.
Generic helpers rely on reflect, be careful this code runs exclusively on runtime so you must have a good test suite.
These helpers have started as an experiment to learn reflect. It may look like lodash in some aspects but
it will have its own roadmap. lodash is an awesome library with a lot of work behind it, all features included in
go-funk
come from internal use cases.
You can also find typesafe implementation in the godoc.
Long story, short answer because func
is a reserved word in Go, I wanted something similar.
Initially this project was named fn
I don't need to explain why that was a bad idea for french speakers :)
Let's funk
!
<3
go get github.com/thoas/go-funk
import "github.com/thoas/go-funk"
These examples will be based on the following data model:
type Foo struct {
ID int
FirstName string `tag_name:"tag 1"`
LastName string `tag_name:"tag 2"`
Age int `tag_name:"tag 3"`
}
func (f Foo) TableName() string {
return "foo"
}
With fixtures:
f := &Foo{
ID: 1,
FirstName: "Foo",
LastName: "Bar",
Age: 30,
}
You can import go-funk
using a basic statement:
import "github.com/thoas/go-funk"
Returns true if an element is present in a iteratee (slice, map, string).
One frustrating thing in Go is to implement contains
methods for each type, for example:
func ContainsInt(s []int, e int) bool {
for _, a := range s {
if a == e {
return true
}
}
return false
}
this can be replaced by funk.Contains
:
// slice of string
funk.Contains([]string{"foo", "bar"}, "bar") // true
// slice of Foo ptr
funk.Contains([]*Foo{f}, f) // true
funk.Contains([]*Foo{f}, func (foo *Foo) bool {
return foo.ID == f.ID
}) // true
funk.Contains([]*Foo{f}, nil) // false
b := &Foo{
ID: 2,
FirstName: "Florent",
LastName: "Messa",
Age: 28,
}
funk.Contains([]*Foo{f}, b) // false
// string
funk.Contains("florent", "rent") // true
funk.Contains("florent", "foo") // false
// even map
funk.Contains(map[int]string{1: "Florent"}, 1) // true
funk.Contains(map[int]string{1: "Florent"}, func(key int, name string) bool {
return key == 1 // or `name == "Florent"` for the value type
}) // true
see also, typesafe implementations: ContainsInt, ContainsInt64, ContainsFloat32, ContainsFloat64, ContainsString
Returns the intersection between two collections.
funk.Intersect([]int{1, 2, 3, 4}, []int{2, 4, 6}) // []int{2, 4}
funk.Intersect([]string{"foo", "bar", "hello", "bar"}, []string{"foo", "bar"}) // []string{"foo", "bar"}
see also, typesafe implementations: IntersectString
Returns the difference between two collections.
funk.Difference([]int{1, 2, 3, 4}, []int{2, 4, 6}) // []int{1, 3}, []int{6}
funk.Difference([]string{"foo", "bar", "hello", "bar"}, []string{"foo", "bar"}) // []string{"hello"}, []string{}
see also, typesafe implementations: DifferenceString
Gets the index at which the first occurrence of a value is found in an array or return -1 if the value cannot be found.
// slice of string
funk.IndexOf([]string{"foo", "bar"}, "bar") // 1
funk.IndexOf([]string{"foo", "bar"}, func(value string) bool {
return value == "bar"
}) // 1
funk.IndexOf([]string{"foo", "bar"}, "gilles") // -1
see also, typesafe implementations: IndexOfInt, IndexOfInt64, IndexOfFloat32, IndexOfFloat64, IndexOfString
Gets the index at which the last occurrence of a value is found in an array or return -1 if the value cannot be found.
// slice of string
funk.LastIndexOf([]string{"foo", "bar", "bar"}, "bar") // 2
funk.LastIndexOf([]string{"foo", "bar", "bar"}, func(value string) bool {
return value == "bar"
}) // 2
funk.LastIndexOf([]string{"foo", "bar"}, "gilles") // -1
see also, typesafe implementations: LastIndexOfInt, LastIndexOfInt64, LastIndexOfFloat32, LastIndexOfFloat64, LastIndexOfString
Transforms a slice or an array of structs to a map based on a pivot
field.
f := &Foo{
ID: 1,
FirstName: "Gilles",
LastName: "Fabio",
Age: 70,
}
b := &Foo{
ID: 2,
FirstName: "Florent",
LastName: "Messa",
Age: 80,
}
results := []*Foo{f, b}
mapping := funk.ToMap(results, "ID") // map[int]*Foo{1: f, 2: b}
Transforms an array or a slice to a set (a map with zero-size values).
f := Foo{
ID: 1,
FirstName: "Gilles",
LastName: "Fabio",
Age: 70,
}
b := Foo{
ID: 2,
FirstName: "Florent",
LastName: "Messa",
Age: 80,
}
mapping := funk.ToSet([]Foo{f, b}) // map[Foo]stuct{}{f: struct{}{}, b: struct{}{}}
mapping := funk.ToSet([4]int{1, 1, 2, 2}) // map[int]struct{}{1: struct{}{}, 2: struct{}{}}
Filters a slice based on a predicate.
r := funk.Filter([]int{1, 2, 3, 4}, func(x int) bool {
return x%2 == 0
}) // []int{2, 4}
see also, typesafe implementations: FilterInt, FilterInt64, FilterFloat32, FilterFloat64, FilterString
Reduces an iteratee based on an accumulator function or operation rune for numbers.
// Using operation runes. '+' and '*' only supported.
r := funk.Reduce([]int{1, 2, 3, 4}, '+', float64(0)) // 10
r := funk.Reduce([]int{1, 2, 3, 4}, '*', 1) // 24
// Using accumulator function
r := funk.Reduce([]int{1, 2, 3, 4}, func(acc float64, num int) float64 {
return acc + float64(num)
}, float64(0)) // 10
r := funk.Reduce([]int{1, 2, 3, 4}, func(acc string, num int) string {
return acc + fmt.Sprint(num)
}, "") // "1234"
Finds an element in a slice based on a predicate.
r := funk.Find([]int{1, 2, 3, 4}, func(x int) bool {
return x%2 == 0
}) // 2
see also, typesafe implementations: FindInt, FindInt64, FindFloat32, FindFloat64, FindString
Manipulates an iteratee (map, slice) and transforms it to another type:
- map -> slice
- map -> map
- slice -> map
- slice -> slice
r := funk.Map([]int{1, 2, 3, 4}, func(x int) int {
return x * 2
}) // []int{2, 4, 6, 8}
r := funk.Map([]int{1, 2, 3, 4}, func(x int) string {
return "Hello"
}) // []string{"Hello", "Hello", "Hello", "Hello"}
r = funk.Map([]int{1, 2, 3, 4}, func(x int) (int, int) {
return x, x
}) // map[int]int{1: 1, 2: 2, 3: 3, 4: 4}
mapping := map[int]string{
1: "Florent",
2: "Gilles",
}
r = funk.Map(mapping, func(k int, v string) int {
return k
}) // []int{1, 2}
r = funk.Map(mapping, func(k int, v string) (string, string) {
return fmt.Sprintf("%d", k), v
}) // map[string]string{"1": "Florent", "2": "Gilles"}
Manipulates an iteratee (map, slice) and transforms it to to a flattened collection of another type:
- map -> slice
- slice -> slice
r := funk.FlatMap([][]int{{1, 2}, {3, 4}}, func(x []int) []int {
return append(x, 0)
}) // []int{1, 2, 0, 3, 4, 0}
mapping := map[string][]int{
"Florent": {1, 2},
"Gilles": {3, 4},
}
r = funk.FlatMap(mapping, func(k string, v []int) []int {
return v
}) // []int{1, 2, 3, 4}
Retrieves the value at path of struct(s) or map(s).
var bar *Bar = &Bar{
Name: "Test",
Bars: []*Bar{
&Bar{
Name: "Level1-1",
Bar: &Bar{
Name: "Level2-1",
},
},
&Bar{
Name: "Level1-2",
Bar: &Bar{
Name: "Level2-2",
},
},
},
}
var foo *Foo = &Foo{
ID: 1,
FirstName: "Dark",
LastName: "Vador",
Age: 30,
Bar: bar,
Bars: []*Bar{
bar,
bar,
},
}
funk.Get([]*Foo{foo}, "Bar.Bars.Bar.Name") // []string{"Level2-1", "Level2-2"}
funk.Get(foo, "Bar.Bars.Bar.Name") // []string{"Level2-1", "Level2-2"}
funk.Get(foo, "Bar.Name") // Test
funk.Get
also support map
values:
bar := map[string]interface{}{
"Name": "Test",
}
foo1 := map[string]interface{}{
"ID": 1,
"FirstName": "Dark",
"LastName": "Vador",
"Age": 30,
"Bar": bar,
}
foo2 := &map[string]interface{}{
"ID": 1,
"FirstName": "Dark",
"LastName": "Vador",
"Age": 30,
"Labels": map[string]interface{} {
"example.com/hello": "world",
},
} // foo2.Bar is nil
funk.Get(bar, "Name") // "Test"
funk.Get([]map[string]interface{}{foo1, foo2}, "Bar.Name") // []string{"Test"}
funk.Get(foo2, "Bar.Name") // nil
funk.Get(foo2, `Labels."example.com/hello"`) // world
funk.Get
also handles nil
values:
bar := &Bar{
Name: "Test",
}
foo1 := &Foo{
ID: 1,
FirstName: "Dark",
LastName: "Vador",
Age: 30,
Bar: bar,
}
foo2 := &Foo{
ID: 1,
FirstName: "Dark",
LastName: "Vador",
Age: 30,
} // foo2.Bar is nil
funk.Get([]*Foo{foo1, foo2}, "Bar.Name") // []string{"Test"}
funk.Get(foo2, "Bar.Name") // nil
Retrieves the value of the pointer or default.
str := "hello world"
GetOrElse(&str, "foobar") // string{"hello world"}
GetOrElse(str, "foobar") // string{"hello world"}
GetOrElse(nil, "foobar") // string{"foobar"}
Set value at a path of a struct
var bar Bar = Bar{
Name: "level-0",
Bar: &Bar{
Name: "level-1",
Bars: []*Bar{
{Name: "level2-1"},
{Name: "level2-2"},
},
},
}
_ = Set(&bar, "level-0-new", "Name")
fmt.Println(bar.Name) // "level-0-new"
MustSet(&bar, "level-1-new", "Bar.Name")
fmt.Println(bar.Bar.Name) // "level-1-new"
Set(&bar, "level-2-new", "Bar.Bars.Name")
fmt.Println(bar.Bar.Bars[0].Name) // "level-2-new"
fmt.Println(bar.Bar.Bars[1].Name) // "level-2-new"
Short hand for funk.Set if struct does not contain interface{} field type to discard errors.
Copy a struct with only selected fields. Slice is handled by pruning all elements.
bar := &Bar{
Name: "Test",
}
foo1 := &Foo{
ID: 1,
FirstName: "Dark",
LastName: "Vador",
Bar: bar,
}
pruned, _ := Prune(foo1, []string{"FirstName", "Bar.Name"})
// *Foo{
// ID: 0,
// FirstName: "Dark",
// LastName: "",
// Bar: &Bar{Name: "Test},
// }
Same functionality as funk.Prune, but uses struct tags instead of struct field names.
Creates an array of the own enumerable map keys or struct field names.
funk.Keys(map[string]int{"one": 1, "two": 2}) // []string{"one", "two"} (iteration order is not guaranteed)
foo := &Foo{
ID: 1,
FirstName: "Dark",
LastName: "Vador",
Age: 30,
}
funk.Keys(foo) // []string{"ID", "FirstName", "LastName", "Age"} (iteration order is not guaranteed)
Creates an array of the own enumerable map values or struct field values.
funk.Values(map[string]int{"one": 1, "two": 2}) // []int{1, 2} (iteration order is not guaranteed)
foo := &Foo{
ID: 1,
FirstName: "Dark",
LastName: "Vador",
Age: 30,
}
funk.Values(foo) // []interface{}{1, "Dark", "Vador", 30} (iteration order is not guaranteed)
Range over an iteratee (map, slice).
Or update element in slice(Not map, reflect#Value#MapIndex#CanSet is false).
funk.ForEach([]int{1, 2, 3, 4}, func(x int) {
fmt.Println(x)
})
foo := []int{1,2,3}
funk.ForEach(foo, func(x *int){ *x = *x * 2})
fmt.Println(foo) // []int{2, 4, 6}
Range over an iteratee (map, slice) from the right.
results := []int{}
funk.ForEachRight([]int{1, 2, 3, 4}, func(x int) {
results = append(results, x)
})
fmt.Println(results) // []int{4, 3, 2, 1}
Creates an array of elements split into groups with the length of the size. If array can't be split evenly, the final chunk will be the remaining element.
funk.Chunk([]int{1, 2, 3, 4, 5}, 2) // [][]int{[]int{1, 2}, []int{3, 4}, []int{5}}
Recursively flattens an array.
funk.FlattenDeep([][]int{[]int{1, 2}, []int{3, 4}}) // []int{1, 2, 3, 4}
Creates an array with unique values.
funk.Uniq([]int{0, 1, 1, 2, 3, 0, 0, 12}) // []int{0, 1, 2, 3, 12}
see also, typesafe implementations: UniqInt, UniqInt64, UniqFloat32, UniqFloat64, UniqString
Creates an array with unique values returned by a callback.
funk.UniqBy([]int{0, 1, 1, 2, 3, 0, 0, 12}, func(nbr int) int {
return nbr % 3
}) // []int{0, 1, 2}
foo1 := Foo{
ID: 42,
FirstName: "Bob",
}
foo2 := Foo{
ID: 42,
FirstName: "Bob",
}
funk.UniqBy([]Foo{foo1, foo2}, func(f Foo) int {
return f.ID
}) // []Foo{ Foo{ID: 42, Firstname: "Bob"} }
Creates an array/slice with n elements dropped from the beginning.
funk.Drop([]int{0, 0, 0, 0}, 3) // []int{0}
see also, typesafe implementations: DropInt, DropInt32, DropInt64, DropFloat32, DropFloat64, DropString
Gets all but the last element of array.
funk.Initial([]int{0, 1, 2, 3, 4}) // []int{0, 1, 2, 3}
Gets all but the first element of array.
funk.Tail([]int{0, 1, 2, 3, 4}) // []int{1, 2, 3, 4}
Creates an array of shuffled values.
funk.Shuffle([]int{0, 1, 2, 3, 4}) // []int{2, 1, 3, 4, 0}
see also, typesafe implementations: ShuffleInt, ShuffleInt64, ShuffleFloat32, ShuffleFloat64, ShuffleString
Returns the subtraction between two collections. It preserve order.
funk.Subtract([]int{0, 1, 2, 3, 4}, []int{0, 4}) // []int{1, 2, 3}
funk.Subtract([]int{0, 3, 2, 3, 4}, []int{0, 4}) // []int{3, 2, 3}
see also, typesafe implementations: SubtractString_
Computes the sum of the values in an array.
funk.Sum([]int{0, 1, 2, 3, 4}) // 10.0
funk.Sum([]interface{}{0.5, 1, 2, 3, 4}) // 10.5
see also, typesafe implementations: SumInt, SumInt64, SumFloat32, SumFloat64
Transforms an array such that the first element will become the last, the second element will become the second to last, etc.
funk.Reverse([]int{0, 1, 2, 3, 4}) // []int{4, 3, 2, 1, 0}
see also, typesafe implementations: ReverseInt, ReverseInt64, ReverseFloat32, ReverseFloat64, ReverseString, ReverseStrings
Returns a slice based on an element.
funk.SliceOf(f) // will return a []*Foo{f}
Generates a random int, based on a min and max values.
funk.RandomInt(0, 100) // will be between 0 and 100
Generates a random string with a fixed length.
funk.RandomString(4) // will be a string of 4 random characters
Generates a sharded string with a fixed length and depth.
funk.Shard("e89d66bdfdd4dd26b682cc77e23a86eb", 1, 2, false) // []string{"e", "8", "e89d66bdfdd4dd26b682cc77e23a86eb"}
funk.Shard("e89d66bdfdd4dd26b682cc77e23a86eb", 2, 2, false) // []string{"e8", "9d", "e89d66bdfdd4dd26b682cc77e23a86eb"}
funk.Shard("e89d66bdfdd4dd26b682cc77e23a86eb", 2, 3, true) // []string{"e8", "9d", "66", "bdfdd4dd26b682cc77e23a86eb"}
Returns true if a collection is a subset of another
funk.Subset([]int{1, 2, 4}, []int{1, 2, 3, 4, 5}) // true
funk.Subset([]string{"foo", "bar"},[]string{"foo", "bar", "hello", "bar", "hi"}) //true
go-funk
currently has an open issue about performance, don't hesitate to participate in the discussion
to enhance the generic helpers implementations.
Let's stop beating around the bush, a typesafe implementation in pure Go of funk.Contains
, let's say for example:
func ContainsInt(s []int, e int) bool {
for _, a := range s {
if a == e {
return true
}
}
return false
}
will always outperform an implementation based on reflect in terms of speed and allocs because of how it's implemented in the language.
If you want a similarity, gorm will always be slower than sqlx (which is very low level btw) and will use more allocs.
You must not think generic helpers of go-funk
as a replacement when you are dealing with performance in your codebase,
you should use typesafe implementations instead.
- Ping me on twitter @thoas (DMs, mentions, whatever :))
- Fork the project
- Fix open issues or request new features
Don't hesitate ;)
- Florent Messa
- Gilles Fabio
- Alexey Pokhozhaev
- Alexandre Nicolaie