Cats-tagless is a small library built to facilitate transforming and composing tagless final encoded algebras.
Cats-tagless is currently available for Scala 2.11, 2.12 and 2.13.
Add the following dependency in build.sbt
libraryDependencies +=
"org.typelevel" %% "cats-tagless-macros" % latestVersion //latest version indicated in the badge above
// For Scala 2.10-2.12 only. scalamacros paradise is included in scala 2.13
addCompilerPlugin("org.scalamacros" % "paradise" % "2.1.0" cross CrossVersion.full)
Say we have a typical tagless encoded algebra ExpressionAlg[F[_]]
import cats.tagless._
@autoFunctorK
trait ExpressionAlg[F[_]] {
def num(i: String): F[Float]
def divide(dividend: Float, divisor: Float): F[Float]
}
With Cats-tagless you can transform this interpreter using Cats' FunctionK
, i.e, you can transform an ExpressionAlg[F]
to an ExpressionAlg[G]
using a FunctionK[F, G]
, a.k.a. F ~> G
. Cats-tagless generates a FunctorK
instance for your algebra.
The @autoFunctorK
annotation adds the following line (among some other code) in the companion object.
object ExpressionAlg {
implicit def functorKForExpressionAlg: FunctorK[ExpressionAlg] =
Derive.functorK[ExpressionAlg]
}
This functorKForExpressionAlg
is a FunctorK
instance for ExpressionAlg
which can map a ExpressionAlg[F]
to a ExpressionAlg[G]
using a FunctionK[F, G]
.
Note that the usage of @autoFunctorK
, like all other @autoXXXX
annotations provided by cats-tagless, is optional, you can manually add this instance yourself.
For example, if you have an interpreter of ExpressionAlg[Try]
import util.Try
object tryExpression extends ExpressionAlg[Try] {
def num(i: String) = Try(i.toFloat)
def divide(dividend: Float, divisor: Float) = Try(dividend / divisor)
}
You can transform it to an interpreter of ExpressionAlg[Option]
import cats.tagless.implicits._
import cats.implicits._
import cats._
val fk : Try ~> Option = λ[Try ~> Option](_.toOption)
tryExpression.mapK(fk)
// res0: ExpressionAlg[Option]
Note that the Try ~> Option
is implemented using kind projector's polymorphic lambda syntax.
Obviously, FunctorK
instance is only possible when the effect type F[_]
appears only in the
covariant position (i.e. the return types). For algebras with effect type also appearing in the contravariant position (i.e. argument types), Cats-tagless provides a InvariantK
type class and an autoInvariantK
annotation to automatically generate instances.
@autoFunctorK
also add an auto implicit derivation, so that if you have an implicit ExpressionAlg[F]
and an implicit
F ~> G
, you can automatically have a ExpressionAlg[G]
.
It works like this
import ExpressionAlg.autoDerive._
implicitly[ExpressionAlg[Option]] //implicitly derived from a `ExpressionAlg[Try]` and a `Try ~> Option`
This auto derivation can be turned off using an annotation argument: @autoFunctorK(autoDerivation = false)
.
With Cats-tagless, you can lift your algebra interpreters to use Free
to achieve stack safety.
For example, say you have an interpreter using Try
@finalAlg @autoFunctorK
trait Increment[F[_]] {
def plusOne(i: Int): F[Int]
}
implicit object incTry extends Increment[Try] {
def plusOne(i: Int) = Try(i + 1)
}
def program[F[_]: Monad: Increment](i: Int): F[Int] = for {
j <- Increment[F].plusOne(i)
z <- if (j < 10000) program[F](j) else Monad[F].pure(j)
} yield z
Obviously, this program is not stack safe.
program[Try](0)
//throws java.lang.StackOverflowError
Now, let's use auto derivation to lift the interpreter with Try
into an interpreter with Free
import cats.free.Free
import cats.arrow.FunctionK
import Increment.autoDerive._
implicit def toFree[F[_]]: F ~> Free[F, ?] = λ[F ~> Free[F, ?]](t => Free.liftF(t))
program[Free[Try, ?]](0).foldMap(FunctionK.id)
// res9: scala.util.Try[Int] = Success(10000)
Again, the magic here is that Cats-tagless auto derive an Increment[Free[Try, ?]]
when there is an implicit Try ~> Free[Try, ?]
and a Increment[Try]
in scope. This auto derivation can be turned off using an annotation argument: @autoFunctorK(autoDerivation = false)
.
You can use the SemigroupalK
type class to create a new interpreter that runs both interpreters and return the result as a cats.Tuple2K
. The @autoSemigroupalK
attribute adds an instance of SemigroupalK
to the companion object. Example:
@autoSemigroupalK
trait ExpressionAlg[F[_]] {
def num(i: String): F[Float]
def divide(dividend: Float, divisor: Float): F[Float]
}
val prod = tryExpression.productK(optionExpression)
prod.num("2")
// res11: cats.data.Tuple2K[Option,scala.util.Try,Float] = Tuple2K(Some(2.0),Success(2.0))
If you want to combine more than 2 interpreters, the @autoProductNK
attribute adds a series of product{n}K (n = 3..9)
methods to the companion object. Unlike productK
living in the SemigroupalK
type class, currently we don't have a type class for these product{n}K
operations yet.
Cats-tagless also provides three annotations that can generate cats.Functor
, cats.Invariant
cats.Contravariant
instance for traits.
For documentation/FAQ/guides, go to typelevel.github.io/cats-tagless.
Any contribution is more than welcome. Also feel free to report bugs, request features using github issues or gitter.
Discussion around Cats-tagless is encouraged in the Gitter channel as well as on Github issue and PR pages.
We adopted the Scala Code of Conduct. People are expected to follow it when discussing Cats-tagless on the Github page, Gitter channel, or other venues.
Copyright (C) 2019 Maintainers of Cats-tagless
Cats-tagless is licensed under the Apache License 2.0