Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[experimental] Add lora quant #994

Open
wants to merge 7 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
63 changes: 63 additions & 0 deletions onediff_diffusers_extensions/examples/quant_lora/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,63 @@
### Default Configuration without LoRA

Run:
```
python3 onediff_diffusers_extensions/examples/quant_lora/test.py \
--saved-image sd.png
```

Performance:
- Iterations per second: 8.49 it/s
- Time taken: 3.92 seconds
- Max used CUDA memory: 10.465GiB



### Using LoRA

Run:
```
python3 onediff_diffusers_extensions/examples/quant_lora/test.py \
--saved-image sd_lora.png \
--use_lora
```

Performance:
- Iterations per second: 8.53 it/s
- Time taken: 3.91 seconds
- Max used CUDA memory: 10.477GiB



### Compile

Run:
```
python3 onediff_diffusers_extensions/examples/quant_lora/test.py \
--compiler-config '{"mode": "max-optimize:max-autotune:low-precision", "memory_format": "channels_last", "options": {"triton.fuse_attention_allow_fp16_reduction": false}}' \
--saved-image sd_lora_compile.png \
--use_lora
```

Performance:
- Iterations per second: 14.94 it/s
- Time taken: 2.29 seconds
- Max used CUDA memory: 11.475GiB



### Compiled with Quantization

Run:
```
python3 onediff_diffusers_extensions/examples/quant_lora/test.py \
--compiler-config '{"mode": "max-optimize:max-autotune:low-precision", "memory_format": "channels_last", "options": {"triton.fuse_attention_allow_fp16_reduction": false}}' \
--quantize-config '{"quant_type": "int8_dynamic"}' \
--saved-image sd_lora_int8.png \
--use_lora
```

Performance:
- Iterations per second: 17.00 it/s
- Time taken: 2.04 seconds
- Max used CUDA memory: 8.808GiB
170 changes: 170 additions & 0 deletions onediff_diffusers_extensions/examples/quant_lora/test.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,170 @@
import argparse
import json
import time

import torch

from diffusers import AutoPipelineForText2Image as pipeline_cls
from onediffx import compile_pipe, quantize_pipe


def parse_args():
parser = argparse.ArgumentParser(
description="Use onediif (nexfort) to accelerate image generation with Stable Diffusion + LoRA"
)
parser.add_argument(
"--model",
type=str,
default="stabilityai/stable-diffusion-xl-base-1.0",
help="Model path or identifier.",
)
parser.add_argument(
"--lora-model-id",
type=str,
default="minimaxir/sdxl-wrong-lora",
help="LoRA model identifier for fine-tuning weights.",
)
parser.add_argument(
"--lora-filename",
type=str,
default="pytorch_lora_weights.bin",
help="Filename for LoRA weights.",
)
parser.add_argument(
"--compiler-config", type=str, help="JSON string for compiler config."
)
parser.add_argument(
"--quantize-config", type=str, help="JSON string for quantization config."
)
parser.add_argument(
"--prompt",
type=str,
default="anime style, 1 girl, indoors, sitting on the sofa, living room, pink hair, white sock, blue eyes, from back, from above, face towards viewer, playing video games, holding controller, black silk, parted lips.",
help="Prompt for the image generation.",
)
parser.add_argument(
"--height", type=int, default=1024, help="Height of the generated image."
)
parser.add_argument(
"--width", type=int, default=1024, help="Width of the generated image."
)
parser.add_argument(
"--guidance_scale",
type=float,
default=7.5,
help="The scale factor for the guidance.",
)
parser.add_argument(
"--num-inference-steps", type=int, default=30, help="Number of inference steps."
)
parser.add_argument(
"--saved-image",
type=str,
default="./sd.png",
help="Path to save the generated image.",
)
parser.add_argument(
"--seed", type=int, default=888, help="Seed for random number generation."
)
parser.add_argument(
"--warmup-iterations",
type=int,
default=1,
help="Number of warm-up iterations before actual inference.",
)
parser.add_argument(
"--use_lora", action="store_true", help="Use LoRA weights for the generation"
)
return parser.parse_args()


args = parse_args()

device = torch.device("cuda")


class SDGenerator:
def __init__(self, model, compiler_config=None, quantize_config=None):
self.pipe = pipeline_cls.from_pretrained(model, torch_dtype=torch.float16)

if args.use_lora:
print("Use LoRA...")
self.pipe.load_lora_weights(
args.lora_model_id, weight_name=args.lora_filename
)
self.pipe.fuse_lora()

self.pipe.to(device)

if compiler_config:
print("compile...")
self.pipe = self.compile_pipe(self.pipe, compiler_config)

if quantize_config:
print("quant...")
self.pipe = self.quantize_pipe(self.pipe, quantize_config)

def warmup(self, gen_args, warmup_iterations):
warmup_args = gen_args.copy()

warmup_args["generator"] = torch.Generator(device=device).manual_seed(0)

print("Starting warmup...")
start_time = time.time()
for _ in range(warmup_iterations):
self.pipe(**warmup_args)
end_time = time.time()
print("Warmup complete.")
print(f"Warmup time: {end_time - start_time:.2f} seconds")

def generate(self, gen_args):
gen_args["generator"] = torch.Generator(device=device).manual_seed(args.seed)

# Run the model
start_time = time.time()
images = self.pipe(**gen_args).images
end_time = time.time()

images[0].save(args.saved_image)

return images[0], end_time - start_time

def compile_pipe(self, pipe, compiler_config):
options = compiler_config
pipe = compile_pipe(
pipe, backend="nexfort", options=options, fuse_qkv_projections=True
)
return pipe

def quantize_pipe(self, pipe, quantize_config):
pipe = quantize_pipe(pipe, ignores=[], **quantize_config)
return pipe


def main():
compiler_config = json.loads(args.compiler_config) if args.compiler_config else None
quantize_config = json.loads(args.quantize_config) if args.quantize_config else None

sd = SDGenerator(args.model, compiler_config, quantize_config)

gen_args = {
"prompt": args.prompt,
"negative_prompt": "wrong",
"num_inference_steps": args.num_inference_steps,
"height": args.height,
"width": args.width,
"guidance_scale": args.guidance_scale,
}

sd.warmup(gen_args, args.warmup_iterations)

image, inference_time = sd.generate(gen_args)
print(
f"Generated image saved to {args.saved_image} in {inference_time:.2f} seconds."
)
cuda_mem_after_used = torch.cuda.max_memory_allocated() / (1024**3)
print(f"Max used CUDA memory : {cuda_mem_after_used:.3f}GiB")


if __name__ == "__main__":
main()
Loading