If you see the official example, it is really confusing to use where to start.
Use tritony! You will get really short lines of code like example below.
import argparse
import os
from glob import glob
import numpy as np
from PIL import Image
from tritony import InferenceClient
def preprocess(img, dtype=np.float32, h=224, w=224, scaling="INCEPTION"):
sample_img = img.convert("RGB")
resized_img = sample_img.resize((w, h), Image.Resampling.BILINEAR)
resized = np.array(resized_img)
if resized.ndim == 2:
resized = resized[:, :, np.newaxis]
scaled = (resized / 127.5) - 1
ordered = np.transpose(scaled, (2, 0, 1))
return ordered.astype(dtype)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--image_folder", type=str, help="Input folder.")
FLAGS = parser.parse_args()
client = InferenceClient.create_with("densenet_onnx", "0.0.0.0:8001", input_dims=3, protocol="grpc")
client.output_kwargs = {"class_count": 1}
image_data = []
for filename in glob(os.path.join(FLAGS.image_folder, "*")):
image_data.append(preprocess(Image.open(filename)))
result = client(np.asarray(image_data))
for output in result:
max_value, arg_max, class_name = output[0].decode("utf-8").split(":")
print(f"{max_value} ({arg_max}) = {class_name}")
- 24.07.11 Upgrade minimum tritonclient version to 2.34.0
- 23.08.30 Support
optional
with model input,parameters
on config.pbtxt - 23.06.16 Support tritonclient>=2.34.0
- Loosely modified the requirements related to tritonclient
- Simple configuration. Only
$host:$port
and$model_name
are required. - Generating asynchronous requests with
asyncio.Queue
- Simple Model switching
- Support async tritonclient
$ pip install tritonclient[all]
$ pip install tritony
./bin/run_triton_tritony_sample.sh
pytest -s --cov-report term-missing --cov=tritony tests/
- Follow steps in the official triton server documentation
# Download Images from https://github.com/triton-inference-server/server.git
python ./example/image_client.py --image_folder "./server/qa/images"