Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Always use np.intp for indices. #634

Merged
merged 1 commit into from
Jan 18, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions sparse/_compressed/indexing.py
Original file line number Diff line number Diff line change
Expand Up @@ -231,7 +231,7 @@ def get_slicing_selection(arr_data, arr_indices, indptr, starts, ends, col): #
col_count += 1
ind_list.extend(inds)
indptr[i + 1] = indptr[i] + len(inds)
ind_list = np.array(ind_list, dtype=np.int64)
ind_list = np.array(ind_list, dtype=np.intp)
indices = np.array(indices, dtype=indptr.dtype)
data = arr_data[ind_list]
return (data, indices, indptr)
Expand Down Expand Up @@ -260,7 +260,7 @@ def get_array_selection(arr_data, arr_indices, indptr, starts, ends, col): # pr
indices.append(c)
ind_list.extend(inds)
indptr[i + 1] = indptr[i] + len(inds)
ind_list = np.array(ind_list, dtype=np.int64)
ind_list = np.array(ind_list, dtype=np.intp)
indices = np.array(indices, dtype=indptr.dtype)
data = arr_data[ind_list]
return (data, indices, indptr)
Expand Down
4 changes: 3 additions & 1 deletion sparse/_umath.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,6 @@
import itertools
import operator
from functools import reduce
from itertools import zip_longest

import numba
Expand Down Expand Up @@ -256,7 +258,7 @@ def _get_expanded_coords_data(coords, data, params, broadcast_shape):
expanded_data = data[all_idx[first_dim]]
else:
expanded_coords = all_idx if len(data) else np.empty((0, all_idx.shape[1]), dtype=np.intp)
expanded_data = np.repeat(data, np.prod(broadcast_shape, dtype=np.int64))
expanded_data = np.repeat(data, reduce(operator.mul, broadcast_shape, 1))
return np.asarray(expanded_coords), np.asarray(expanded_data)

for d, p in zip(range(len(broadcast_shape)), params):
Expand Down
22 changes: 11 additions & 11 deletions sparse/_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -110,19 +110,19 @@
N = size of system (elements)
random_state = seed for random number generation
"""
n = np.int64(n + 1)
N = np.int64(N)
n = np.intp(n + 1)
N = np.intp(N)

Check warning on line 114 in sparse/_utils.py

View check run for this annotation

Codecov / codecov/patch

sparse/_utils.py#L113-L114

Added lines #L113 - L114 were not covered by tests
qu1 = N - n + 1
Vprime = np.exp(np.log(random_state.random()) / n)
i = 0
arr = np.zeros(n - 1, dtype=np.int64)
arr = np.zeros(n - 1, dtype=np.intp)

Check warning on line 118 in sparse/_utils.py

View check run for this annotation

Codecov / codecov/patch

sparse/_utils.py#L118

Added line #L118 was not covered by tests
arr[-1] = -1
while n > 1:
nmin1inv = 1 / (n - 1)
while True:
while True:
X = N * (1 - Vprime)
S = np.int64(X)
S = np.intp(X)

Check warning on line 125 in sparse/_utils.py

View check run for this annotation

Codecov / codecov/patch

sparse/_utils.py#L125

Added line #L125 was not covered by tests
if qu1 > S:
break
Vprime = np.exp(np.log(random_state.random()) / n)
Expand Down Expand Up @@ -167,9 +167,9 @@
N = size of system (elements)
random_state = seed for random number generation
"""
n = np.int64(n)
N = np.int64(N)
arr = np.zeros(n, dtype=np.int64)
n = np.intp(n)
N = np.intp(N)
arr = np.zeros(n, dtype=np.intp)

Check warning on line 172 in sparse/_utils.py

View check run for this annotation

Codecov / codecov/patch

sparse/_utils.py#L170-L172

Added lines #L170 - L172 were not covered by tests
arr[-1] = -1
i = 0
top = N - n
Expand All @@ -186,7 +186,7 @@
i += 1
N -= 1
n -= 1
S = np.int64(N * random_state.random())
S = np.intp(N * random_state.random())

Check warning on line 189 in sparse/_utils.py

View check run for this annotation

Codecov / codecov/patch

sparse/_utils.py#L189

Added line #L189 was not covered by tests
arr[i] = arr[i - 1] + S + 1
i += 1
return arr
Expand All @@ -197,11 +197,11 @@
"""
If density of random matrix is greater than .5, it is faster to sample states not included
Parameters:
arr = np.array(np.int64) of indices to be excluded from sample
arr = np.array(np.intp) of indices to be excluded from sample
N = size of the system (elements)
"""
N = np.int64(N)
a = np.zeros(np.int64(N - len(inv)), dtype=np.int64)
N = np.intp(N)
a = np.zeros(np.intp(N - len(inv)), dtype=np.intp)

Check warning on line 204 in sparse/_utils.py

View check run for this annotation

Codecov / codecov/patch

sparse/_utils.py#L203-L204

Added lines #L203 - L204 were not covered by tests
j = 0
k = 0
for i in range(N):
Expand Down
Loading