Skip to content

Multi-Class Few-Shot Semantic Segmentation with Visual Prompts

License

Notifications You must be signed in to change notification settings

pasqualedem/LabelAnything

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

PWC

This repository contains the official code for the paper "LabelAnything: Multi-Class Few-Shot Semantic Segmentation with Visual Prompts".

Label Anything

Requirements

Note: The following instructions are for a Linux environment using CUDA 12.1.

Create a virtual environment using our conda environment file:

conda env create -f label-anything.yml
conda activate label_anything

Prepare the Datasets

Enter the data directory, create and enter the directory coco and download the COCO 2017 train and val images and the COCO 2014 annotations from the COCO website:

cd data
mkdir coco
cd coco
wget http://images.cocodataset.org/zips/train2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
wget http://images.cocodataset.org/annotations/annotations_trainval2014.zip

Unzip the files:

unzip train2017.zip
unzip val2017.zip
unzip annotations_trainval2014.zip
rm -rf train2017.zip val2017.zip annotations_trainval2014.zip

The coco directory should now contain the following files and directories:

coco
├── annotations
│   ├── captions_train2014.json
│   ├── captions_val2014.json
│   ├── instances_train2014.json
│   ├── instances_val2014.json
|   ├── person_keypoints_train2014.json
|   └── person_keypoints_val2014.json
├── train2017
└── val2017

Now, join the images of the train and val sets into a single directory:

mv val2017/* train2017
mv train2017 train_val_2017
rm -rf val2017

Finally, you will have to rename image filenames in the COCO 2014 annotations to match the filenames in the train_val_2017 directory. To do this, run the following script:

python main.py rename_coco20i_json --instances_path data/coco/annotations/instances_train2014.json
python main.py rename_coco20i_json --instances_path data/coco/annotations/instances_val2014.json

Preprocess

We use Segment Anything pretrained models to extract image features. Enter the checkpoints directory and download the pretrained models from the Segment Anything repository:

mkdir offline
cd checkpoints
wget https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth

Optional: To optimize model training and evaluation, you can extract the output of the vision encoder for each image in the COCO dataset, and save it to disk. We call last_hidden_state the directory containing the output of the convolutional neck we added on top of the Vision Transformer, while we call last_block_state the final output of ViT. This can be done by running the following script:

mkdir -p data/coco/vit_sam_embeddings/last_hidden_state
mkdir data/coco/vit_sam_embeddings/last_block_state
python main.py generate_embeddings --encoder vit_b --checkpoint checkpoints/sam_vit_b_01ec64.pth --use_sam_checkpoint --directory data/coco/train_val_2017 --batch_size 16 --num_workers=8 --outfolder data/coco/vit_sam_embeddings/last_hidden_state --last_block_dir data/coco/vit_sam_embeddings/last_block_state --custom_preprocess

For ViT-MAE

python main.py generate_embeddings --encoder vit_b_mae --directory data/coco/train_val_2017 --batch_size 32 --num_workers 2 --outfolder data/coco/embeddings_vit_mae_1024/ --model_name facebook/vit-mae-base --image_resolution 1024 --mean_std default --huggingface

python main.py generate_embeddings --encoder vit_b_mae --directory data/coco/train_val_2017 --batch_size 64 --num_workers 2 --outfolder data/coco/embeddings_vit_mae_320 --model_name facebook/vit-mae-base --image_resolution 320 --mean_std default --huggingface

For Dino

sbatch slurm/generate_embeddings --encoder vit_dino_b8 --directory data/coco/train_val_2017 --batch_size 64 --num_workers 2 --outfolder data/coco/embeddings_dino_vitb8_480 --model_name facebook/dino-vitb8 --image_resolution 480 --mean_std default --huggingface

For PASCAL

mkdir -p data/pascal/vit_sam_embeddings/last_hidden_state
mkdir data/pascal/vit_sam_embeddings/last_block_state
python main.py generate_embeddings --encoder vit_b --checkpoint checkpoints/sam_vit_b_01ec64.pth --use_sam_checkpoint --directory data/pascal/JPEGImages --batch_size 16 --num_workers=8 --outfolder data/pascal/pascal_embeddings_vit_b_sam/last_hidden_state --last_block_dir data/pascal/pascal_embeddings_vit_b_sam/last_block_state --custom_preprocess

Train and Test

You can train LabelAnything model on COCO-20i by running the command:

python main.py experiment --parameters="parameters/COCO_vit.yaml"

If you extracted the embeddings you can run the command:

python main.py experiment --parameters="parameters/COCO.yaml"

By default, four training processes will be launched sequentially, one for each fold of the 4-fold cross-validation. It is possible to launch only interesting training by deleting them from the other_grids section of the parameter file. Remember to also change the val_fold_idx in the parameters.dataset section to the fold you want to validate, which will be executed at the beginning. If you start a model training, you don't need to run the the validation step, as it is already included in the training process.

If you have a multi GPU machine, you can run the command:

accelerate launch --multi_gpu main.py experiment --parameters="parameters/COCO.yaml"
accelerate launch --multi_gpu main.py experiment --parameters="parameters/COCO_vit.yaml"  

Experiments are tracked using Weights & Biases. The resulting run files are stored in the offline/wandb/run-<date>-<run_id> directory. Model weights for the specific run are saved in the files subdirectory of the run folder.

Test

To protect anonimity, our pretrained models are not available for download. Model weights will be available upon acceptance.

Demo

If you have trained the model and want to use it in an interactive way to segment images, you can run the following command:

python -m streamlit run app.py

In the web interface, enter the Weights & Biases path to a run id <entity>/<project>/<run-id> (help) of the model you want to use. Currently, the demo only supports box annotations. You will be asked to enter a query image, class names, and support images with prompts.

Project Organization

├── LICENSE
├── Makefile           <- Makefile with commands like `make data` or `make train`
├── README.md          <- The top-level README for developers using this project.
├── data
│   ├── external       <- Data from third party sources.
│   ├── interim        <- Intermediate data that has been transformed.
│   ├── processed      <- The final, canonical data sets for modeling.
│   └── raw            <- The original, immutable data dump.
│
├── docs               <- A default Sphinx project; see sphinx-doc.org for details
│
├── checkpoints        <- Trained and serialized models, model predictions, or model summaries
│
├── notebooks          <- Jupyter notebooks. Naming convention is a number (for ordering),
│                         the creator's initials, and a short `-` delimited description, e.g.
│                         `1.0-jqp-initial-data-exploration`.
│
├── references         <- Data dictionaries, manuals, and all other explanatory materials.
│
├── reports            <- Generated analysis as HTML, PDF, LaTeX, etc.
│   └── figures        <- Generated graphics and figures to be used in reporting
│
├── requirements.txt   <- The requirements file for reproducing the analysis environment, e.g.
│                         generated with `pip freeze > requirements.txt`
│
├── setup.py           <- makes project pip installable (pip install -e .) so src can be imported
├── label_anything     <- Source code for use in this project.
│   ├── __init__.py    <- Makes src a Python module
│   │
│   ├── data           <- Scripts to download or generate data
│   │   └── make_dataset.py
│   │
│   ├── features       <- Scripts to turn raw data into features for modeling
│   │   └── build_features.py
│   │
│   ├── models         <- Scripts of the models
│   │
│   └── visualization  <- Scripts to create exploratory and results oriented visualizations
│       └── visualize.py
│
└── tox.ini            <- tox file with settings for running tox; see tox.readthedocs.io

Old Stuff

  • HOW TO CREATE A VENV FOR CINECA
  • we need to add another file for cineca requirements
python3 -m venv .venv
source .venv/bin/activate
pip install --upgrade pip
pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118
pip install -r requirements_cineca.txt
  • GENERAL PURPOSE ENVIRONMENT
python3 -m venv .venv
source .venv/bin/activate
pip install --upgrade pip
pip install torch torchvision torchaudio
pip install -r requirements.txt

Project based on the cookiecutter data science project template. #cookiecutterdatascience

  • DOWNLOAD DRAM DATASET
wget -P  ./data/raw https://faculty.runi.ac.il/arik/site/artseg/DRAM_processed.zip
unzip ./data/raw/DRAM_processed.zip -d ./data/raw
unrar x ./data/raw/DRAM_processed.rar ./data/raw
  • PROMPT ENCODER PRETRAINING To train the prompt encoder on CINECA, you can run the command
sbatch pretrain_pe_parallel

Then, once the pre-training phase is completed, move the checkpoint from the out directory to chrckpoint running:

cp path/to/out/dir/pytorch_model_1.bin path/to/checkpoint/dir
cd path/to/checkpoint/dir/
mv pytorch_model_1.bin model.bin

About

Multi-Class Few-Shot Semantic Segmentation with Visual Prompts

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published