Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature] Add DOTAMeanAP metric #65

Merged
merged 46 commits into from
Jan 28, 2023
Merged
Show file tree
Hide file tree
Changes from 15 commits
Commits
Show all changes
46 commits
Select commit Hold shift + click to select a range
101e4e5
add dota_map
YanxingLiu Dec 11, 2022
e713bf0
add dota_map docstrings
YanxingLiu Dec 11, 2022
1c81d19
modify some docstrings
YanxingLiu Dec 14, 2022
f952b83
modify some docstrings
YanxingLiu Dec 14, 2022
3159446
add rotated iou calculation with mmcv backend
YanxingLiu Dec 14, 2022
b5e382e
modify some function names
YanxingLiu Dec 15, 2022
c0c5714
Update mmeval/metrics/dota_map.py
YanxingLiu Dec 20, 2022
cbbf225
implement filter_by_bboxes_area as a class method
YanxingLiu Dec 20, 2022
415f801
Merge branch 'AddDOTAMetric' of github.com:YanxingLiu/mmeval into Add…
YanxingLiu Dec 20, 2022
137cebd
implement filter_by_bboxes_area as a class method
YanxingLiu Dec 20, 2022
e803ef9
Update mmeval/metrics/dota_map.py
YanxingLiu Dec 20, 2022
2c1c175
modify function name from filter_by_bboxes_area to _filter_by_bboxes_…
YanxingLiu Dec 20, 2022
6cbc2e3
fix a bug thta occurs when mmcv is installed
YanxingLiu Dec 24, 2022
a78c9f8
add qbox support
YanxingLiu Dec 27, 2022
ea1939a
modify docstrings for quadrilateral boxes support
YanxingLiu Dec 28, 2022
e828618
Apply suggestions from code review
ice-tong Jan 4, 2023
f8a663d
fix lint
ice-tong Jan 4, 2023
ce58a23
Update mmeval/metrics/dota_map.py
YanxingLiu Jan 10, 2023
a7cd54f
Update mmeval/metrics/dota_map.py
YanxingLiu Jan 10, 2023
c267631
Update mmeval/metrics/voc_map.py
YanxingLiu Jan 10, 2023
c68c76f
modify DOTAMeanAP docstrings
YanxingLiu Jan 10, 2023
1e35757
Merge branch 'AddDOTAMetric' of github.com:YanxingLiu/mmeval into Add…
YanxingLiu Jan 10, 2023
0db424a
modify VOCMeanAP docstrings
YanxingLiu Jan 10, 2023
7fbd3ef
Merge branch 'main' into AddDOTAMetric
YanxingLiu Jan 11, 2023
3582b99
add DOTAMeanAP to metrics.rst
YanxingLiu Jan 11, 2023
3073d20
merge from upstream
YanxingLiu Jan 11, 2023
e695933
Update mmeval/metrics/utils/bbox_overlaps_rotated.py
YanxingLiu Jan 16, 2023
961196f
add docstring in mmeval/metrics/utils/bbox_overlaps_rotated.py
YanxingLiu Jan 16, 2023
56901cf
Merge branch 'AddDOTAMetric' of github.com:YanxingLiu/mmeval into Add…
YanxingLiu Jan 16, 2023
239649d
add some test cases and some assertion
YanxingLiu Jan 16, 2023
aa8be5a
Update mmeval/metrics/utils/bbox_overlaps_rotated.py
YanxingLiu Jan 16, 2023
4f6dc0f
Update mmeval/metrics/utils/bbox_overlaps_rotated.py
YanxingLiu Jan 16, 2023
8b231ea
Update mmeval/metrics/utils/bbox_overlaps_rotated.py
YanxingLiu Jan 19, 2023
7b045b7
Update mmeval/metrics/dota_map.py
YanxingLiu Jan 19, 2023
8efb43b
add opencv-python in requirements/runtime.txt
YanxingLiu Jan 19, 2023
39b6aa6
fix: use try_import to import cv2
ice-tong Jan 19, 2023
5cac2ae
Merge branch 'main' into AddDOTAMetric
ice-tong Jan 19, 2023
136bf32
Update mmeval/metrics/dota_map.py
YanxingLiu Jan 25, 2023
f629d3f
Update mmeval/metrics/dota_map.py
YanxingLiu Jan 25, 2023
ee381b3
fix a bug caused by static function
YanxingLiu Jan 25, 2023
db2e60b
modify docstring of filter_by_bboxes_area_rotated
YanxingLiu Jan 25, 2023
11dfb09
Update mmeval/metrics/voc_map.py
YanxingLiu Jan 25, 2023
8a4c255
Update mmeval/metrics/dota_map.py
YanxingLiu Jan 25, 2023
1f2973a
Update mmeval/metrics/utils/bbox_overlaps_rotated.py
YanxingLiu Jan 25, 2023
eff2898
Update mmeval/metrics/utils/bbox_overlaps_rotated.py
YanxingLiu Jan 25, 2023
a3d46b1
add test_metric_accurate function in test_dota_map.py
YanxingLiu Jan 28, 2023
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion mmeval/metrics/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,7 @@
from .accuracy import Accuracy
from .ava_map import AVAMeanAP
from .coco_detection import COCODetectionMetric
from .dota_map import DOTAMeanAP
from .end_point_error import EndPointError
from .f_metric import F1Metric
from .hmean_iou import HmeanIoU
Expand All @@ -24,5 +25,5 @@
'F1Metric', 'HmeanIoU', 'SingleLabelMetric', 'COCODetectionMetric',
'PCKAccuracy', 'MpiiPCKAccuracy', 'JhmdbPCKAccuracy', 'ProposalRecall',
'PSNR', 'MAE', 'MSE', 'SSIM', 'SNR', 'MultiLabelMetric',
'AveragePrecision', 'AVAMeanAP'
'AveragePrecision', 'AVAMeanAP', 'DOTAMeanAP'
]
305 changes: 305 additions & 0 deletions mmeval/metrics/dota_map.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,305 @@
# Copyright (c) OpenMMLab. All rights reserved.
import logging
import numpy as np
from typing import Dict, List, Optional, Sequence, Tuple, Union

from mmeval.metrics.voc_map import VOCMeanAP
YanxingLiu marked this conversation as resolved.
Show resolved Hide resolved
from .utils.bbox_overlaps_rotated import (calculate_bboxes_area_rotated,
qbox_to_rbox)

logger = logging.getLogger(__name__)

try:
# we prefer to use `bbox_iou_rotated` in mmcv to calculate ious
from mmcv.ops import box_iou_rotated
from torch import Tensor
HAS_MMCV = True
except Exception as e: # noqa F841
from .utils.bbox_overlaps_rotated import calculate_overlaps_rotated
HAS_MMCV = False
logger.debug(
'mmcv is not installed, calculating IoU of rotated bbox with OpenCV.')


def filter_by_bboxes_area_rotated(bboxes: np.ndarray,
zhouzaida marked this conversation as resolved.
Show resolved Hide resolved
min_area: Optional[float],
max_area: Optional[float]):
"""Filter the rotated bboxes with an area range.

Args:
bboxes (numpy.ndarray): The bboxes with shape (n, 5) in 'xywha' format.
min_area (Optional[float]): The minimum area. If None, does not filter
the minimum area.
max_area (Optional[float]): The maximum area. If None, does not filter
the maximum area.
YanxingLiu marked this conversation as resolved.
Show resolved Hide resolved

Returns:
numpy.ndarray: A mask of ``bboxes`` identify which bbox are filtered.
YanxingLiu marked this conversation as resolved.
Show resolved Hide resolved
"""
bboxes_area = calculate_bboxes_area_rotated(bboxes)
area_mask = np.ones_like(bboxes_area, dtype=bool)
if min_area is not None:
area_mask &= (bboxes_area >= min_area)
if max_area is not None:
area_mask &= (bboxes_area < max_area)
return area_mask


class DOTAMeanAP(VOCMeanAP):
"""DOTA evaluation metric.

DOTA is a large-scale dataset for object detection in aerial images which
is introduced in https://arxiv.org/abs/1711.10398. This metric computes
the DOTA mAP (mean Average Precision) with the given IoU thresholds and
scale ranges.

Args:
iou_thrs (float | List[float]): IoU thresholds. Defaults to 0.5.
scale_ranges (List[tuple], optional): Scale ranges for evaluating
mAP. If not specified, all bounding boxes would be included in
evaluation. Defaults to None.
num_classes (int, optional): The number of classes. If None, it will be
obtained from the 'CLASSES' field in ``self.dataset_meta``.
Defaults to None.
eval_mode (str): 'area' or '11points', 'area' means calculating the
area under precision-recall curve, '11points' means calculating
the average precision of recalls at [0, 0.1, ..., 1].
The PASCAL VOC2007 defaults to use '11points', while PASCAL
VOC2012 defaults to use 'area'.
Defaults to '11points'.
nproc (int): Processes used for computing TP and FP. If nproc
is less than or equal to 1, multiprocessing will not be used.
Defaults to 4.
drop_class_ap (bool): Whether to drop the class without ground truth
when calculating the average precision for each class.
classwise (bool): Whether to return the computed results of each
class. Defaults to False.
predict_box_type (str): Box type of model results. If the QuadriBoxes
is used, you need to specify 'qbox'. Defaults to 'rbox'.
**kwargs: Keyword parameters passed to :class:`BaseMetric`.

Examples:

>>> import numpy as np
>>> from mmeval import DOTAMetric
>>> num_classes = 15
>>> dota_metric = DOTAMetric(num_classes=15)
>>>
>>> def _gen_bboxes(num_bboxes, img_w=256, img_h=256):
... # random generate bounding boxes in 'xywha' formart.
... x = np.random.rand(num_bboxes, ) * img_w
... y = np.random.rand(num_bboxes, ) * img_h
... w = np.random.rand(num_bboxes, ) * (img_w - x)
... h = np.random.rand(num_bboxes, ) * (img_h - y)
... a = np.random.rand(num_bboxes, ) * np.pi / 2
... return np.stack([x, y, w, h, a], axis=1)
>>> prediction = {
... 'bboxes': _gen_bboxes(10),
... 'scores': np.random.rand(10, ),
... 'labels': np.random.randint(0, num_classes, size=(10, ))
... }
>>> groundtruth = {
... 'bboxes': _gen_bboxes(10),
... 'labels': np.random.randint(0, num_classes, size=(10, )),
... 'bboxes_ignore': _gen_bboxes(5),
... 'labels_ignore': np.random.randint(0, num_classes, size=(5, ))
... }
>>> dota_metric(predictions=[prediction, ], groundtruths=[groundtruth, ]) # doctest: +ELLIPSIS # noqa: E501
{'[email protected]': ..., 'mAP': ...}
"""

def __init__(self,
iou_thrs: Union[float, List[float]] = 0.5,
scale_ranges: Optional[List[Tuple]] = None,
num_classes: Optional[int] = None,
eval_mode: str = '11points',
nproc: int = 4,
drop_class_ap: bool = True,
classwise: bool = False,
predict_box_type: str = 'rbox',
**kwargs) -> None:
super().__init__(
iou_thrs=iou_thrs,
scale_ranges=scale_ranges,
num_classes=num_classes,
eval_mode=eval_mode,
use_legacy_coordinate=False,
nproc=nproc,
drop_class_ap=drop_class_ap,
classwise=classwise,
**kwargs)
self.predict_box_type = predict_box_type
ice-tong marked this conversation as resolved.
Show resolved Hide resolved

def add(self, predictions: Sequence[Dict], groundtruths: Sequence[Dict]) -> None: # type: ignore # yapf: disable # noqa: E501
"""Add the intermediate results to ``self._results``.

Note: The box shape of ``predictions`` and ``groundtruths`` is depends
on the ``self.predict_box_type``. If ``self.predict_box_type`` is
'rbox', the box shape should be (N, 5) which represents the (x,y,w,h,
angle), otherwise the box shape should be (N, 8) which represents the
(x1,y1,x2,y2,x3,y3,x4,y4).
YanxingLiu marked this conversation as resolved.
Show resolved Hide resolved

Args:
predictions (Sequence[Dict]): A sequence of dict. Each dict
representing a detection result for an image, with the
following keys:
- bboxes (numpy.ndarray): Shape (N, 5) or shape (N, 8).
ice-tong marked this conversation as resolved.
Show resolved Hide resolved
bounding bboxes of this image. The box format is depend on
``self.predict_box_type``. Details in upper note.
- scores (numpy.ndarray): Shape (N, ), the predicted scores
of bounding boxes.
- labels (numpy.ndarray): Shape (N, ), the predicted labels
of bounding boxes.
groundtruths (Sequence[Dict]): A sequence of dict. Each dict
represents a groundtruths for an image, with the following
keys:
- bboxes (numpy.ndarray): Shape (M, 5) or shape (M, 8), the
ice-tong marked this conversation as resolved.
Show resolved Hide resolved
groundtruth bounding bboxes of this image, The box format
is depend on ``self.predict_box_type``.Details in upper
note.
- labels (numpy.ndarray): Shape (M, ), the ground truth
labels of bounding boxes.
- bboxes_ignore (numpy.ndarray): Shape (K, 5) or shape(K, 8),
the groundtruth ignored bounding bboxes of this image. The
box format is depend on ``self.predict_box_type``.Details in
upper note.
- labels_ignore (numpy.ndarray): Shape (K, ), the ground
truth ignored labels of bounding boxes.
"""
for prediction, groundtruth in zip(predictions, groundtruths):
assert isinstance(prediction, dict), 'The prediciton should be ' \
f'a sequence of dict, but got a sequence of {type(prediction)}.' # noqa: E501
assert isinstance(groundtruth, dict), 'The label should be ' \
f'a sequence of dict, but got a sequence of {type(groundtruth)}.' # noqa: E501
self._results.append((prediction, groundtruth))

@staticmethod
def _calculate_image_tpfp( # type: ignore
pred_bboxes: np.ndarray, gt_bboxes: np.ndarray,
ignore_gt_bboxes: np.ndarray, iou_thrs: List[float],
area_ranges: List[Tuple[Optional[float], Optional[float]]], *args,
**kwargs) -> Tuple[np.ndarray, np.ndarray]:
"""Calculate the true positive and false positive on an image.

Args:
pred_bboxes (numpy.ndarray): Predicted bboxes of this image, with
shape (N, 6) or shape (N,9) which depends on
``self.predict_box_type`` attribute.
The predicted score of the bbox is
concatenated behind the predicted bbox.
gt_bboxes (numpy.ndarray): Ground truth bboxes of this image, with
shape (M, 5) or shape (M, 8).
ignore_gt_bboxes (numpy.ndarray): Ground truth ignored bboxes of
this image, with shape (K, 5) or shape (K, 8).
iou_thrs (List[float]): The IoU thresholds.
area_ranges (List[Tuple]): The area ranges.

Returns:
tuple (tp, fp):
- tp (numpy.ndarray): Shape (num_ious, num_scales, N),
the true positive flag of each predicted bbox on this image.
- fp (numpy.ndarray): Shape (num_ious, num_scales, N),
the false positive flag of each predicted bbox on this image.

Note:
This method should be a staticmethod to avoid resource competition
during multiple processes.
"""
# Step 0. (optional)
# we need to convert qbox type box to rbox type because OpenCV only
# support rbox format iou calculation.
if gt_bboxes.shape[-1] == 8: # qbox shape (M, 8)
pred_bboxes = qbox_to_rbox(pred_bboxes[:, :8])
gt_bboxes = qbox_to_rbox(gt_bboxes)
ignore_gt_bboxes = qbox_to_rbox(ignore_gt_bboxes)

# Step 1. Concatenate `gt_bboxes` and `ignore_gt_bboxes`, then set
# the `ignore_gt_flags`.
all_gt_bboxes = np.concatenate((gt_bboxes, ignore_gt_bboxes))
ignore_gt_flags = np.concatenate((np.zeros(
(gt_bboxes.shape[0], 1),
dtype=bool), np.ones((ignore_gt_bboxes.shape[0], 1), dtype=bool)))

# Step 2. Initialize the `tp` and `fp` arrays.
num_preds = pred_bboxes.shape[0]
tp = np.zeros((len(iou_thrs), len(area_ranges), num_preds))
fp = np.zeros((len(iou_thrs), len(area_ranges), num_preds))

# Step 3. If there are no gt bboxes in this image, then all pred bboxes
# within area range are false positives.
if all_gt_bboxes.shape[0] == 0:
for idx, (min_area, max_area) in enumerate(area_ranges):
area_mask = filter_by_bboxes_area_rotated(
pred_bboxes[:, :5], min_area, max_area)
fp[:, idx, area_mask] = 1
return tp, fp

# Step 4. Calculate the IoUs between the predicted bboxes and the
# ground truth bboxes.
if HAS_MMCV:
# the input and output of box_iou_rotated are torch.Tensor
ious = np.array(
box_iou_rotated(
Tensor(pred_bboxes[:, :5]), Tensor(all_gt_bboxes)))
else:
ious = calculate_overlaps_rotated((pred_bboxes[:, :5]),
all_gt_bboxes)
# For each pred bbox, the max iou with all gts.
ious_max = ious.max(axis=1)
# For each pred bbox, which gt overlaps most with it.
ious_argmax = ious.argmax(axis=1)
# Sort all pred bbox in descending order by scores.
sorted_indices = np.argsort(-pred_bboxes[:, -1])

# Step 5. Count the `tp` and `fp` of each iou threshold and area range.
for iou_thr_idx, iou_thr in enumerate(iou_thrs):
for area_idx, (min_area, max_area) in enumerate(area_ranges):
# The flags that gt bboxes have been matched.
gt_covered_flags = np.zeros(all_gt_bboxes.shape[0], dtype=bool)
# The flags that gt bboxes out of area range.
gt_area_mask = filter_by_bboxes_area_rotated(
zhouzaida marked this conversation as resolved.
Show resolved Hide resolved
all_gt_bboxes, min_area, max_area)
ignore_gt_area_flags = ~gt_area_mask

# Count the prediction bboxes in order of decreasing score.
for pred_bbox_idx in sorted_indices:
if ious_max[pred_bbox_idx] >= iou_thr:
matched_gt_idx = ious_argmax[pred_bbox_idx]
# Ignore the pred bbox that match an ignored gt bbox.
if ignore_gt_flags[matched_gt_idx]:
continue
# Ignore the pred bbox that is out of area range.
if ignore_gt_area_flags[matched_gt_idx]:
continue
if not gt_covered_flags[matched_gt_idx]:
tp[iou_thr_idx, area_idx, pred_bbox_idx] = 1
gt_covered_flags[matched_gt_idx] = True
else:
# This gt bbox has been matched and counted as fp.
fp[iou_thr_idx, area_idx, pred_bbox_idx] = 1
else:
area_mask = filter_by_bboxes_area_rotated(
zhouzaida marked this conversation as resolved.
Show resolved Hide resolved
pred_bboxes[pred_bbox_idx, :5], min_area, max_area)
if area_mask:
fp[iou_thr_idx, area_idx, pred_bbox_idx] = 1

return tp, fp

def _filter_by_bboxes_area(self, bboxes: np.ndarray,
zhouzaida marked this conversation as resolved.
Show resolved Hide resolved
min_area: Optional[float],
max_area: Optional[float]):
"""Filter the bboxes with an area range.

Args:
bboxes (numpy.ndarray): The bboxes with shape (n, 5) in 'xywha'
format.
min_area (Optional[float]): The minimum area. If None, does not
filter the minimum area.
max_area (_type_): The maximum area. If None, does not filter
YanxingLiu marked this conversation as resolved.
Show resolved Hide resolved
the maximum area.

Returns:
numpy.ndarray: A mask of ``bboxes`` identify which bbox are
filtered.
YanxingLiu marked this conversation as resolved.
Show resolved Hide resolved
"""
return filter_by_bboxes_area_rotated(bboxes, min_area, max_area)
8 changes: 4 additions & 4 deletions mmeval/metrics/end_point_error.py
Original file line number Diff line number Diff line change
Expand Up @@ -149,13 +149,13 @@ def end_point_error_map(
epe = epe_map.reshape(-1)[val]
return epe.mean().cpu().numpy(), int(val.sum())

@dispatch # noqa: F811
def end_point_error_map(
@dispatch
def end_point_error_map( # noqa: F811
ice-tong marked this conversation as resolved.
Show resolved Hide resolved
self,
prediction: 'oneflow.Tensor',
label: 'oneflow.Tensor',
valid_mask: Optional['oneflow.Tensor'] = None
) -> Tuple[np.ndarray, int]:
valid_mask: Optional['oneflow.Tensor'] = None) -> Tuple[np.ndarray,
int]:
ice-tong marked this conversation as resolved.
Show resolved Hide resolved
ice-tong marked this conversation as resolved.
Show resolved Hide resolved
"""Calculate end point error map.

Args:
Expand Down
5 changes: 4 additions & 1 deletion mmeval/metrics/utils/__init__.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,7 @@
# Copyright (c) OpenMMLab. All rights reserved.
from .bbox_overlaps import calculate_bboxes_area, calculate_overlaps
from .bbox_overlaps_rotated import (calculate_bboxes_area_rotated,
calculate_overlaps_rotated)
from .image_transforms import reorder_and_crop
from .keypoint import calc_distances, distance_acc
from .polygon import (poly2shapely, poly_intersection, poly_iou,
Expand All @@ -8,5 +10,6 @@
__all__ = [
'poly2shapely', 'polys2shapely', 'poly_union', 'poly_intersection',
'poly_make_valid', 'poly_iou', 'calc_distances', 'distance_acc',
'calculate_overlaps', 'calculate_bboxes_area', 'reorder_and_crop'
'calculate_overlaps', 'calculate_bboxes_area', 'reorder_and_crop',
'calculate_bboxes_area_rotated', 'calculate_overlaps_rotated'
]
Loading