-
Notifications
You must be signed in to change notification settings - Fork 49
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
[Feature] Support CityScapesDetection Metric #103
Open
BIGWangYuDong
wants to merge
11
commits into
open-mmlab:main
Choose a base branch
from
BIGWangYuDong:city
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Changes from 10 commits
Commits
Show all changes
11 commits
Select commit
Hold shift + click to select a range
1ecd1c4
[Feature] Support CityScapesDetection Metric
BIGWangYuDong ee5f87e
update logic and add UT
BIGWangYuDong eea110f
fix typo
BIGWangYuDong ec075e3
update logic
BIGWangYuDong 87b9e93
fix conflict
BIGWangYuDong 540a26c
update ut
BIGWangYuDong a15ca2b
support using pillow to write image
BIGWangYuDong 9e67571
merge main
BIGWangYuDong 36ccc0b
update logic
BIGWangYuDong 4065930
add requirements
BIGWangYuDong cad5f61
update ut and print table function
BIGWangYuDong File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,318 @@ | ||
# Copyright (c) OpenMMLab. All rights reserved. | ||
import itertools | ||
import os | ||
import os.path as osp | ||
import tempfile | ||
import warnings | ||
from collections import OrderedDict | ||
from terminaltables import AsciiTable | ||
from typing import Dict, Optional, Sequence, Union | ||
|
||
from mmeval.core.base_metric import BaseMetric | ||
|
||
try: | ||
import cityscapesscripts.evaluation.evalInstanceLevelSemanticLabeling as CSEval # noqa: E501 | ||
import cityscapesscripts.helpers.labels as CSLabels | ||
|
||
from .utils.cityscapes_wrapper import evaluateImgLists | ||
HAS_CITYSCAPESAPI = True | ||
except ImportError: | ||
HAS_CITYSCAPESAPI = False | ||
|
||
try: | ||
from mmcv import imwrite | ||
except ImportError: | ||
from mmeval.utils import imwrite | ||
|
||
|
||
class CityScapesDetection(BaseMetric): | ||
"""CityScapes metric for instance segmentation. | ||
|
||
Args: | ||
outfile_prefix (str): The prefix of txt and png files. It is the | ||
saving path of txt and png file, e.g. "a/b/prefix". | ||
If not specified, a temp file will be created. | ||
It should be specified when format_only is True. Defaults to None. | ||
seg_prefix (str, optional): Path to the directory which contains the | ||
cityscapes instance segmentation masks. It's necessary when | ||
training and validation. It could be None when infer on test | ||
dataset. Defaults to None. | ||
format_only (bool): Format the output results without performing | ||
evaluation. It is useful when you want to format the result | ||
to a specific format and submit it to the test server. | ||
Defaults to False. | ||
classwise (bool): Whether to return the computed results of each | ||
class. Defaults to False. | ||
dump_matches (bool): Whether dump matches.json file during evaluating. | ||
Defaults to False. | ||
backend_args (dict, optional): Arguments to instantiate the | ||
preifx of uri corresponding backend. Defaults to None. | ||
**kwargs: Keyword parameters passed to :class:`BaseMetric`. | ||
|
||
Examples: | ||
>>> import numpy as np | ||
>>> import os | ||
>>> import os.path as osp | ||
>>> import tempfile | ||
>>> from PIL import Image | ||
>>> from mmeval import CityScapesDetection | ||
>>> | ||
>>> tmp_dir = tempfile.TemporaryDirectory() | ||
>>> dataset_metas = { | ||
... 'classes': ('person', 'rider', 'car', 'truck', 'bus', 'train', | ||
... 'motorcycle', 'bicycle') | ||
... } | ||
>>> seg_prefix = osp.join(tmp_dir.name, 'cityscapes', 'gtFine', 'val') | ||
>>> os.makedirs(seg_prefix, exist_ok=True) | ||
>>> cityscapes_det_metric = CityScapesDetection( | ||
... dataset_meta=dataset_metas, | ||
... seg_prefix=seg_prefix, | ||
... classwise=True) | ||
>>> | ||
>>> def _gen_fake_datasamples(seg_prefix): | ||
... city = 'lindau' | ||
... os.makedirs(osp.join(seg_prefix, city), exist_ok=True) | ||
... | ||
... sequenceNb = '000000' | ||
... frameNb1 = '000019' | ||
... img_name1 = f'{city}_{sequenceNb}_{frameNb1}_gtFine_instanceIds.png' | ||
... img_path1 = osp.join(seg_prefix, city, img_name1) | ||
... basename1 = osp.splitext(osp.basename(img_path1))[0] | ||
... masks1 = np.zeros((20, 20), dtype=np.int32) | ||
... masks1[:10, :10] = 24 * 1000 | ||
... Image.fromarray(masks1).save(img_path1) | ||
... | ||
... dummy_mask1 = np.zeros((1, 20, 20), dtype=np.uint8) | ||
... dummy_mask1[:, :10, :10] = 1 | ||
... prediction = { | ||
... 'basename': basename1, | ||
... 'mask_scores': np.array([1.0]), | ||
... 'labels': np.array([0]), | ||
... 'masks': dummy_mask1 | ||
... } | ||
... groundtruth = { | ||
... 'file_name': img_path1 | ||
... } | ||
... | ||
... return [prediction], [groundtruth] | ||
>>> | ||
>>> predictions, groundtruths = _gen_fake_datasamples(seg_prefix) | ||
>>> cityscapes_det_metric(predictions, groundtruths) # doctest: +ELLIPSIS # noqa: E501 | ||
{'mAP': ..., 'AP50': ...} | ||
>>> tmp_dir.cleanup() | ||
""" | ||
|
||
def __init__(self, | ||
outfile_prefix: Optional[str] = None, | ||
seg_prefix: Optional[str] = None, | ||
format_only: bool = False, | ||
classwise: bool = False, | ||
BIGWangYuDong marked this conversation as resolved.
Show resolved
Hide resolved
|
||
dump_matches: bool = False, | ||
backend_args: Optional[dict] = None, | ||
**kwargs): | ||
|
||
if not HAS_CITYSCAPESAPI: | ||
raise RuntimeError('Failed to import `cityscapesscripts`.' | ||
'Please try to install official ' | ||
'cityscapesscripts by ' | ||
'"pip install cityscapesscripts"') | ||
super().__init__(**kwargs) | ||
|
||
self.tmp_dir = None | ||
self.format_only = format_only | ||
if self.format_only: | ||
assert outfile_prefix is not None, 'outfile_prefix must be not' | ||
'None when format_only is True, otherwise the result files will' | ||
'be saved to a temp directory which will be cleaned up at the end.' | ||
else: | ||
assert seg_prefix is not None, '`seg_prefix` is necessary when ' | ||
'computing the CityScapes metrics' | ||
|
||
# outfile_prefix should be a prefix of a path which points to a shared | ||
# storage when train or test with multi nodes. | ||
self.outfile_prefix = outfile_prefix | ||
if outfile_prefix is None: | ||
self.tmp_dir = tempfile.TemporaryDirectory() | ||
self.outfile_prefix = osp.join(self.tmp_dir.name, 'results') | ||
else: | ||
# the directory to save predicted panoptic segmentation mask | ||
self.outfile_prefix = osp.join(self.outfile_prefix, 'results') # type: ignore # yapf: disable # noqa: E501 | ||
# make dir to avoid potential error | ||
dir_name = osp.expanduser(self.outfile_prefix) | ||
os.makedirs(dir_name, exist_ok=True) | ||
|
||
self.seg_prefix = seg_prefix | ||
self.classwise = classwise | ||
self.backend_args = backend_args | ||
self.dump_matches = dump_matches | ||
|
||
def add(self, predictions: Sequence[Dict], groundtruths: Sequence[Dict]) -> None: # type: ignore # yapf: disable # noqa: E501 | ||
"""Add the intermediate results to `self._results`. | ||
|
||
Args: | ||
predictions (Sequence[dict]): A sequence of dict. Each dict | ||
representing a detection result for an image, with the | ||
following keys: | ||
|
||
- basename (str): The image name. | ||
- masks (numpy.ndarray): Shape (N, H, W), the predicted masks. | ||
- labels (numpy.ndarray): Shape (N, ), the predicted labels | ||
of bounding boxes. | ||
- mask_scores (np.array, optional): Shape (N, ), the predicted | ||
scores of masks. | ||
|
||
groundtruths (Sequence[dict]): A sequence of dict. If load from | ||
`ann_file`, the dict inside can be empty. Else, each dict | ||
represents a groundtruths for an image, with the following | ||
keys: | ||
|
||
- file_name (str): The absolute path of groundtruth image. | ||
""" | ||
for prediction, groundtruth in zip(predictions, groundtruths): | ||
assert isinstance(prediction, dict), 'The prediciton should be ' \ | ||
f'a sequence of dict, but got a sequence of {type(prediction)}.' # noqa: E501 | ||
assert isinstance(groundtruth, dict), 'The label should be ' \ | ||
f'a sequence of dict, but got a sequence of {type(groundtruth)}.' # noqa: E501 | ||
prediction = self._process_prediction(prediction) | ||
self._results.append((prediction, groundtruth)) | ||
|
||
def compute_metric(self, results: list) -> Dict[str, Union[float, list]]: | ||
"""Compute the CityScapes metrics. | ||
|
||
Args: | ||
results (List[tuple]): A list of tuple. Each tuple is the | ||
prediction and ground truth of an image. This list has already | ||
been synced across all ranks. | ||
|
||
Returns: | ||
dict: The computed metric. The keys are the names of | ||
the metrics, and the values are corresponding results. | ||
""" | ||
eval_results: OrderedDict = OrderedDict() | ||
|
||
if self.format_only: | ||
self.logger.info('Results are saved in ' # type: ignore | ||
f'{osp.dirname(self.outfile_prefix)}') # type: ignore # yapf: disable # noqa: E501 | ||
return eval_results | ||
|
||
gt_instances_file = osp.join(self.outfile_prefix, 'gtInstances.json') # type: ignore # yapf: disable # noqa: E501 | ||
# split gt and prediction list | ||
preds, gts = zip(*results) | ||
CSEval.args.JSONOutput = False | ||
CSEval.args.colorized = False | ||
CSEval.args.gtInstancesFile = gt_instances_file | ||
|
||
groundtruth_list = [gt['file_name'] for gt in gts] | ||
prediction_list = [pred['pred_txt'] for pred in preds] | ||
CSEval_results = evaluateImgLists( | ||
prediction_list, | ||
groundtruth_list, | ||
CSEval.args, | ||
self.backend_args, | ||
dump_matches=self.dump_matches)['averages'] | ||
|
||
map = float(CSEval_results['allAp']) | ||
map_50 = float(CSEval_results['allAp50%']) | ||
|
||
eval_results['mAP'] = map | ||
eval_results['AP50'] = map_50 | ||
|
||
results_list = ('mAP', f'{round(map * 100, 2):0.2f}', | ||
f'{round(map_50 * 100, 2):0.2f}') | ||
|
||
if self.classwise: | ||
results_per_category = [] | ||
for category, aps in CSEval_results['classes'].items(): | ||
eval_results[f'{category}_ap'] = float(aps['ap']) | ||
eval_results[f'{category}_ap50'] = float(aps['ap50%']) | ||
results_per_category.append( | ||
(f'{category}', f'{round(float(aps["ap"]) * 100, 2):0.2f}', | ||
f'{round(float(aps["ap50%"]) * 100, 2):0.2f}')) | ||
results_per_category.append(results_list) | ||
eval_results['results_list'] = results_per_category | ||
else: | ||
eval_results['results_list'] = [results_list] | ||
|
||
self._print_panoptic_table(eval_results) | ||
BIGWangYuDong marked this conversation as resolved.
Show resolved
Hide resolved
|
||
return eval_results | ||
|
||
def __del__(self) -> None: | ||
"""Clean up the results if necessary.""" | ||
if self.tmp_dir is not None: | ||
self.tmp_dir.cleanup() | ||
|
||
def _process_prediction(self, prediction: dict) -> dict: | ||
"""Process prediction. | ||
|
||
Args: | ||
prediction (Sequence[dict]): A sequence of dict. Each dict | ||
representing a detection result for an image, with the | ||
following keys: | ||
|
||
- basename (str): The image name. | ||
- masks (numpy.ndarray): Shape (N, H, W), the predicted masks. | ||
- labels (numpy.ndarray): Shape (N, ), the predicted labels | ||
of bounding boxes. | ||
- mask_scores (np.array, optional): Shape (N, ), the predicted | ||
scores of masks. | ||
|
||
Returns: | ||
dict: The processed prediction results. With key `pred_txt`. | ||
""" | ||
classes = self.classes | ||
pred = dict() | ||
basename = prediction['basename'] | ||
|
||
pred_txt = osp.join(self.outfile_prefix, basename + '_pred.txt') # type: ignore # yapf: disable # noqa: E501 | ||
pred['pred_txt'] = pred_txt | ||
|
||
labels = prediction['labels'] | ||
masks = prediction['masks'] | ||
mask_scores = prediction['mask_scores'] | ||
with open(pred_txt, 'w') as f: | ||
for i, (label, mask, | ||
mask_score) in enumerate(zip(labels, masks, mask_scores)): | ||
class_name = classes[label] | ||
class_id = CSLabels.name2label[class_name].id | ||
png_filename = osp.join( | ||
self.outfile_prefix, basename + f'_{i}_{class_name}.png') # type: ignore # yapf: disable # noqa: E501 | ||
imwrite(mask, png_filename) | ||
f.write(f'{osp.basename(png_filename)} ' | ||
f'{class_id} {mask_score}\n') | ||
return pred | ||
|
||
@property | ||
def classes(self) -> tuple: | ||
"""Get classes from self.dataset_meta.""" | ||
if self.dataset_meta and 'classes' in self.dataset_meta: | ||
classes = self.dataset_meta['classes'] | ||
elif self.dataset_meta and 'CLASSES' in self.dataset_meta: | ||
classes = self.dataset_meta['CLASSES'] | ||
warnings.warn( | ||
'DeprecationWarning: The `CLASSES` in `dataset_meta` is ' | ||
'deprecated, use `classes` instead!') | ||
else: | ||
raise RuntimeError('Could not find `classes` in dataset_meta: ' | ||
f'{self.dataset_meta}') | ||
return classes | ||
|
||
def _print_panoptic_table(self, eval_results: dict) -> None: | ||
"""Print the evaluation results table. | ||
|
||
Args: | ||
eval_results (dict): The computed metric. | ||
""" | ||
result = eval_results.pop('results_list') | ||
|
||
header = ['class', 'AP(%)', 'AP50(%)'] | ||
table_title = ' Cityscapes Results' | ||
|
||
results_flatten = list(itertools.chain(*result)) | ||
|
||
results_2d = itertools.zip_longest( | ||
*[results_flatten[i::3] for i in range(3)]) | ||
table_data = [header] | ||
table_data += [result for result in results_2d] | ||
table = AsciiTable(table_data, title=table_title) | ||
table.inner_footing_row_border = True | ||
self.logger.info(f'CityScapes Evaluation Results: \n {table.table}') |
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
If
dataset_meta
is required in this Metric, it must be explained in the docstring