Skip to content

GateNet: A shallow neural network for gate perception in drone racing

Notifications You must be signed in to change notification settings

open-airlab/GateNet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

11 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

GateNet: A Shallow Neural Network For Gate Perception In Drone Racing

This repo is a part of the complement material of the paper GateNet: Efficient Deep Neural Network for Gate Perception in Autonomous Drone Racing.

The content is limited since the paper in under review.

GateNet

The figure illustrates of the working principles of our gate perception system. The scene images are captured by a single wide-FOV fish-eye RBG camera and fed into GateNet to estimate the gate center location, as well as distance and orientation with respect to the drone's body frame. The information then will be used to re-project the gate in 3D world frame and applied an extended Kalman Filter to achieve stable gate pose estimation.

alt text

AU-DR Dataset

The AU-DR dataset includes different gate layout cases that appear in a drone racing scenario: (a) single gate, (b)multiple gates, (c ) occluded gates, (d) partially observable gates, (e) gates with a distant layout, and (f) a gate that is too close to the drone’s camera.

alt text

You can download AU-DR datasets here.

References

H.Pham, I. Bozcan, A. Sarabakha, S. Haddadin and E. Kayacan, "GateNet: Efficient Deep Neural Network for Gate Perception in Autonomous Drone Racing", submitted to IEEE International Conference on Robotics and Automation (ICRA) 2021.

About

GateNet: A shallow neural network for gate perception in drone racing

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published