Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Pytorch CNN Segmentation #354

Open
wants to merge 34 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
34 commits
Select commit Hold shift + click to select a range
f1bbca0
pytorch benchmarking notebook
Oct 26, 2021
e585e54
cleaned pytorch notebook
Mar 1, 2022
368bec7
cleaned pytorch notebook output
Mar 1, 2022
b0f6126
cleaned output
Mar 1, 2022
31ce0e6
Update utils.rst
shreyasingh1 Apr 26, 2022
a4cf5a9
Pytorch Segmentation example notebook and helper files (brainlit.utils)
Apr 26, 2022
d6e435c
Merge branch 'shreya-dl' of https://github.com/neurodata/brainlit int…
Apr 26, 2022
00f3744
formatting files with black
Apr 26, 2022
8697f4a
Merge branch 'develop' of https://github.com/neurodata/brainlit into …
Apr 26, 2022
621c4ba
black formatting Pytorch Segmentation notebook
Apr 26, 2022
771c3f9
commenting out napari, adding torch to requirements file
May 3, 2022
43c335b
bug in setup.py
May 3, 2022
20d4e53
black
May 3, 2022
a5fe493
add tests for preprocess.py and performance.py
May 10, 2022
8d1ea9b
black
May 10, 2022
f6d522e
commenting out utils.rst changes
shreyasingh1 May 10, 2022
20b4bc5
renaming test file
May 10, 2022
c062364
Merge branch 'shreya-dl' of https://github.com/neurodata/brainlit int…
May 10, 2022
3d30f59
fixing last bugs so it builds
May 10, 2022
0ac0857
labeling bug
May 10, 2022
d576a9d
relabeling so it builds - building locally now
May 10, 2022
a5d455a
more renaming
May 10, 2022
f511167
black
May 10, 2022
de3e3db
removing tdqm from file
May 10, 2022
d10fe39
[skip ci] test update utils.rst file
shreyasingh1 May 10, 2022
ea35e0c
[skip ci] trying with only preprocess_cnn
shreyasingh1 May 10, 2022
c7eea11
[skip ci] letting docstrings render properly - test
May 10, 2022
966f0c9
[skip ci]
May 10, 2022
e4e476c
[skip ci] update utils.rst
shreyasingh1 May 10, 2022
1f4827b
adding in make_masks.py
May 10, 2022
bc82b7f
Merge branch 'shreya-dl' of https://github.com/neurodata/brainlit int…
May 10, 2022
bd76a71
[skip ci] adding make_masks to rst file
shreyasingh1 May 10, 2022
ffc246d
final push to test circleCI and nettlify build
May 10, 2022
ae4830d
Merge branch 'shreya-dl' of https://github.com/neurodata/brainlit int…
May 10, 2022
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions brainlit/utils/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,3 +2,6 @@
from brainlit.utils.upload import *
from brainlit.utils.Neuron_trace import *
from brainlit.utils.benchmarking_params import *
from brainlit.utils.make_masks import *

import brainlit.utils.cnn_segmentation
4 changes: 4 additions & 0 deletions brainlit/utils/cnn_segmentation/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
import brainlit.utils.cnn_segmentation

from brainlit.utils.cnn_segmentation.preprocess_cnn import *
from brainlit.utils.cnn_segmentation.performance_cnn import *
304 changes: 304 additions & 0 deletions brainlit/utils/cnn_segmentation/performance_cnn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,304 @@
# functions for model training and performance evaluation

import numpy as np
from sklearn.metrics import roc_curve, auc, jaccard_score
import torch
from torch import nn
import matplotlib.pyplot as plt
from sklearn.metrics import (
accuracy_score,
precision_score,
recall_score,
precision_recall_curve,
)


def train_loop(dataloader, model, loss_fn, optimizer):
"""Pytorch model training loop

Arguments:
train_dataloader: torch object from getting_torch_objects function in preprocess.py
model: pytorch model, defined locally
loss_fn: loss_fn class name, ex: BCELoss, Dice
optimizer: name of optimizer, ex. Adam, SGD, etc.
"""
for batch, (X_all, y_all) in enumerate(dataloader):

loss_list = []

for image in range(X_all.shape[1]):
X = np.reshape(X_all[0][image], (1, 1, 66, 66, 20))
y = np.reshape(y_all[0][image], (1, 1, 66, 66, 20))

# Compute prediction and loss
optimizer.zero_grad()
pred = model(X)
pred = torch.squeeze(pred, 3).clone()
loss = loss_fn(pred, y)

# Backpropagation
loss.backward()
optimizer.step()
loss, current = loss.item(), batch * len(X)
loss_list.append(loss)


def test_loop(dataloader, model, loss_fn):
"""Pytorch model testing loop

Arguments:
test_dataloader: torch object from getting_torch_objects function in preprocess.py
model: pytorch model, defined locally
loss_fn: loss_fn class name, ex: BCELoss, Dice

Returns:
List, true images: x_list
Nested list, model predictions for each image at each epoch: y_pred
Nested list, true masks for each image at each epoch: y_list
List, average loss at each epoch: avg_loss
"""
for batch, (X_all, y_all) in enumerate(dataloader):

loss_list = []
y_pred = []
y_list = []
x_list = []

with torch.no_grad():
for image in range(X_all.shape[1]):

X = np.reshape(X_all[0][image], (1, 1, 330, 330, 100))
y = np.reshape(y_all[0][image], (1, 1, 330, 330, 100))
pred = model(X)
pred = torch.squeeze(pred, 3)

x_list.append(X)
y_list.append(y)
y_pred.append(pred)

loss_list.append(loss_fn(pred, y).item())

avg_loss = np.average(loss_list)
print("Avg test loss:", avg_loss)

return x_list, y_pred, y_list, avg_loss


# Dice loss class
class DiceLoss(nn.Module):
def __init__(self, weight=None, size_average=True):
super(DiceLoss, self).__init__()

def forward(self, inputs, targets, smooth=1):
inputs = inputs.view(-1)
targets = targets.view(-1)

intersection = (inputs * targets).sum()
dice = (2.0 * intersection + smooth) / (inputs.sum() + targets.sum() + smooth)

return 1 - dice


def get_metrics(pred_list, y_list):
"""Getting accuracy, precision, and recall at each epoch

Arguments:
pred_list: list of predictions for every image at every epoch, output of testing loop
y_list: list of true y masks, output of testing loop

Returns:
List of average accuracy for each epoch: acc_list
List of average precision for each epoch: precision_list
List of average recall for each epoch: recall_list
List of percent of nonzero predictions at each epoch: percent_nonzero
"""
acc_list = []
precision_list = []
recall_list = []
percent_nonzero = []

for i in range(len(pred_list)):
acc_list_t = []
precision_list_t = []
recall_list_t = []
percent_nonzero_t = []

for j in range(len(pred_list[0])):
pred = pred_list[i][j].clone().numpy()[:, 0].round().astype(int).flatten()
target = y_list[i][j][:, 0].clone().numpy().astype(int).flatten()

acc = accuracy_score(target, pred) * 100
acc_list_t.append(acc)

pr = precision_score(target, pred) * 100
precision_list_t.append(pr)

rc = recall_score(target, pred) * 100
recall_list_t.append(rc)

nz = (np.count_nonzero(pred) / len(target)) * 100
percent_nonzero_t.append(nz)

mean_acc = np.mean(acc_list_t)
mean_pr = np.mean(precision_list_t)
mean_rc = np.mean(recall_list_t)
mean_nz = np.mean(percent_nonzero_t)

acc_list.append(mean_acc)
precision_list.append(mean_pr)
recall_list.append(mean_rc)
percent_nonzero.append(mean_nz)

return acc_list, precision_list, recall_list, percent_nonzero


def quick_stats(stat, epoch, acc_list, precision_list, recall_list, percent_nonzero):
"""Printing quick test stats at specified epoch

Arguments:
stat: str, "all" if you want to print all metrics (accuracy, precision, reacll, % nonzero)
acc_list: list of average accuracy for each epoch, from get_metrics function
precision_list: list of average precision for each epoch, from get_metrics function
recall_list: list of average recall for each epoch, from get_metrics function
percent_nonzero: list of percent of nonzero predictions at each epoch, from get_metrics function

Returns:
Printed metrics for specified epoch
"""
if stat == "accuracy":
print("Accuracy at epoch " + str(epoch) + " is " + str(acc_list[epoch - 1]))
if stat == "all":
print("Accuracy at epoch " + str(epoch) + " is " + str(acc_list[epoch - 1]))
print(
"Precision at epoch " + str(epoch) + " is " + str(precision_list[epoch - 1])
)
print("Recall at epoch " + str(epoch) + " is " + str(recall_list[epoch - 1]))
print(
"Percent nonzero at epoch "
+ str(epoch)
+ " is "
+ str(percent_nonzero[epoch - 1])
)


def plot_metrics_over_epoch(
loss_list, acc_list, precision_list, recall_list, percent_nonzero
):
"""Plotting all metrics over epoch

Arguments:
loss_list: list of test loss over epoch
acc_list: list of average accuracy for each epoch, from get_metrics function
precision_list: list of average precision for each epoch, from get_metrics function
recall_list: list of average recall for each epoch, from get_metrics function
percent_nonzero: list of percent of nonzero predictions at each epoch, from get_metrics function

Returns:
Plotted figures for accuracy, precision, recall, % nonzero, and loss over epoch
"""
plt.figure()
plt.title("Test loss over epoch")
plt.xlabel("Epoch")
plt.ylabel("Test loss")
plt.plot(loss_list)

plt.figure()
plt.title("Accuracy over epoch")
plt.xlabel("Epoch")
plt.ylabel("Avg accuracy (%)")
plt.plot(acc_list)

plt.figure()
plt.title("Precision over epoch")
plt.xlabel("Epoch")
plt.ylabel("Avg precision (%)")
plt.plot(precision_list)

plt.figure()
plt.title("Recall over epoch")
plt.xlabel("Epoch")
plt.ylabel("Avg recall (%)")
plt.plot(recall_list)

plt.figure()
plt.title("Percent_nonzero over epoch")
plt.xlabel("Epoch")
plt.ylabel("Nonzeros (%)")
plt.plot(percent_nonzero)


def plot_pr_histograms(pred_list, y_list):
"""Plotting histograms for precision and recall at final epoch

Arguments:
pred_list: list of predictions for all images at last epoch
y_list: lost of true y masks for all images at last epoch

Returns:
Precision and recall plots for all images at last epoch
"""
i = len(pred_list) - 1
precision_list_t = []
recall_list_t = []

for j in tqdm(range(len(pred_list[0]))):
pred = pred_list[i][j].clone().numpy()[:, 0].round().astype(int).flatten()
target = y_list[i][j][:, 0].clone().numpy().astype(int).flatten()

pr = precision_score(target, pred) * 100
precision_list_t.append(pr)

rc = recall_score(target, pred) * 100
recall_list_t.append(rc)

# Precision histogram on last epoch
plt.figure()
plt.title("Precision histogram for individual 11 images on last epoch")
plt.ylabel("Individual Precision")
plt.hist(precision_list_t, bins=20)

# Recall histogram on last epoch
plt.figure()
plt.title("Recall histogram for individual 11 images on last epoch")
plt.ylabel("Individual Recall")
plt.hist(recall_list_t, bins=20)


def plot_with_napari(x_list, pred_list, y_list):
"""Plotting all test images at an epoch in napari

Arguments:
x_list: list of all x images from testing loop
pred_list: list of all testing predictions at an epoch
y_list: list of true ground truth masks at that same epoch

Returns:
Visualizations of napari image, ground truth mask, and thresholded prediction mask
"""
for i in range(len(y_list[len(y_list) - 1])):
x = x_list[i].clone()[:, 0].numpy()
pred = pred_list[len(pred_list) - 1][i].clone()[:, 0].numpy()
y = y_list[len(y_list) - 1][i].clone()[:, 0].numpy()

fpr, tpr, thresholds = roc_curve(y.flatten(), pred.flatten())
optimal_thresh = thresholds[np.argmax(tpr - fpr)]
# print("Optimal Threshold for image " + str(i) + ": ", optimal_thresh)

pred_thresh = pred

for i in range(1):
for a in range(330):
for b in range(330):
for c in range(100):
if pred[i][a][b][c] > optimal_thresh:
pred_thresh[i][a][b][c] = 1
else:
pred_thresh[i][a][b][c] = 0

import napari

with napari.gui_qt():
viewer = napari.Viewer(ndisplay=3)
viewer.add_image(x[0])
viewer.add_labels(y[0].astype(int))
viewer.add_labels(pred_thresh[0].astype(int), num_colors=2)
Loading