Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[webgpu] Optimize matmulnbits with M > 1 #23102

Merged
merged 6 commits into from
Dec 17, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
128 changes: 125 additions & 3 deletions onnxruntime/contrib_ops/webgpu/quantization/matmul_nbits.cc
Original file line number Diff line number Diff line change
Expand Up @@ -357,7 +357,7 @@
return;
}
let local_A = input_a[a_global*uniforms.K4+step_idx*INNER_DIMENSION_ITEMS_PER_CYCLE+parallel_id];
tile_A[slot][parallel_id] = local_A;

Check warning

Code scanning / PREfast

The const variable 'output_number' can be computed at compile-time. Consider using constexpr (con.5). Warning

The const variable 'output_number' can be computed at compile-time. Consider using constexpr (con.5).
}

fn getBScale(slot: u32, b_global : u32, vec_step_idx : u32, scale_idx: u32) -> output_value_t
Expand Down Expand Up @@ -437,6 +437,103 @@
return Status::OK();
}

Status MatMulNBitsWithLargeMProgram::GenerateShaderCode(ShaderHelper& shader) const {
const auto& a = shader.AddInput("input_a", ShaderUsage::UseUniform | ShaderUsage::UseIndicesTypeAlias | ShaderUsage::UseValueTypeAlias);
const auto& b = shader.AddInput("input_b", ShaderUsage::UseUniform | ShaderUsage::UseIndicesTypeAlias | ShaderUsage::UseValueTypeAlias);
const auto& scales = shader.AddInput("scales", ShaderUsage::UseUniform);
const auto& y = shader.AddOutput("output", ShaderUsage::UseUniform | ShaderUsage::UseValueTypeAlias | ShaderUsage::UseElementTypeAlias | ShaderUsage::UseIndicesTypeAlias);

const uint32_t tile_m = 4;
Fixed Show fixed Hide fixed
const uint32_t workgroup_size = WorkgroupSizeX() * WorkgroupSizeY();
const uint32_t tile_size = WorkgroupSizeX() * components_b_ * 8; // each uint32 has 8 data.
const uint32_t a_length_per_tile = tile_size / a.NumComponents();
constexpr uint32_t block_size = 32;
const uint32_t blocks_per_tile = tile_size / block_size;
shader.AdditionalImplementation() << "fn mm_readA(batch : u32, row : u32, col : u32) -> input_a_value_t {\n"
" if (row < uniforms.input_a_shape[1] && col < uniforms.input_a_shape[2]) {\n"
<< " return " << a.GetByIndices("input_a_indices_t(batch, row, col)") << ";\n"
<< " } else {\n"
" return input_a_value_t(0);\n"
" }\n"
"}\n"
<< "var<workgroup> sub_a: array<array<input_a_value_t, " << a_length_per_tile << ">," << tile_m << ">;\n"
<< "var<workgroup> inter_results: array<array<array<output_value_t, " << WorkgroupSizeX() << ">, " << WorkgroupSizeY() << ">," << tile_m << ">;\n";
shader.MainFunctionBody() << " let col = workgroup_id.x * " << WorkgroupSizeY() << ";\n"
<< " let row = workgroup_id.y * " << tile_m << ";\n"
<< " let batch = workgroup_id.z;\n"
" let n_blocks_per_col = uniforms.input_b_shape[1];\n"
<< " let num_tiles = (n_blocks_per_col - 1) / " << blocks_per_tile << " + 1;\n"
// Loop over shared dimension.
<< " for (var tile: u32 = 0; tile < num_tiles; tile += 1) {\n"
<< " let a_col_start = tile * " << a_length_per_tile << ";\n"
<< " // load one tile A data into shared memory.\n"
<< " for (var a_offset = local_idx; a_offset < " << a_length_per_tile << "; a_offset += " << workgroup_size << ") {\n"
<< " let a_col = a_col_start + a_offset;\n";
for (uint32_t i = 0; i < tile_m; i++) {
shader.MainFunctionBody() << " sub_a[" << i << "][a_offset] = mm_readA(batch, row + " << i << ", a_col);\n";
}
shader.MainFunctionBody() << " }\n"
" workgroupBarrier();\n"
// Each thread processes one block.
" let b_row = col + local_id.y;\n"
<< " let block = tile * " << blocks_per_tile << " + local_id.x;\n";
if (has_zero_points_) {
const auto& zero_points = shader.AddInput("zero_points", ShaderUsage::UseUniform);
shader.MainFunctionBody() << " let zero_point_bytes_per_col = (n_blocks_per_col + 1) / 2;\n"
" let zero_point_byte_count = b_row * zero_point_bytes_per_col + (block >> 0x1u);\n"
" let zero_point_word_index = zero_point_byte_count >> 0x2u;\n"
" let zero_point_byte_offset = zero_point_byte_count & 0x3u;\n"
" let zero_point_nibble_offset: u32 = block & 0x1u;\n"
" let zero_point_bits_offset = (zero_point_byte_offset << 3) + (zero_point_nibble_offset << 2);\n"
<< " let zero_point_word = " << zero_points.GetByOffset("zero_point_word_index") << " >> zero_point_bits_offset;\n"
<< " let zero_point = output_element_t((zero_point_word) & 0xFu);\n";
} else {
// The default zero point is 8 for unsigned 4-bit quantization.
shader.MainFunctionBody() << " let zero_point = output_element_t(8.0);\n";
}
shader.MainFunctionBody() << " var scale = output_element_t(0);\n"
" var b_data = input_b_value_t(0);\n"
<< " if (block < n_blocks_per_col) {\n"
<< " scale = " << scales.GetByOffset("b_row * n_blocks_per_col + block") << ";\n"
<< " b_data = " << b.GetByIndices("input_b_indices_t(b_row, block, 0)") << ";\n"
<< " }\n"
<< " var word_offset = local_id.x * " << block_size / a.NumComponents() << ";\n"
<< " for (var i: u32 = 0; i < " << components_b_ << "; i++) {\n";
shader.MainFunctionBody() << " let b_value = b_data";
if (components_b_ > 1) {
shader.MainFunctionBody() << "[i]";
}
shader.MainFunctionBody() << ";\n"
" let b_value_lower = unpack4xU8(b_value & 0x0F0F0F0Fu);\n"
" let b_value_upper = unpack4xU8((b_value >> 4) & 0x0F0F0F0Fu);\n"
" let b_quantized_values = mat2x4<output_element_t>(output_element_t(b_value_lower[0]), output_element_t(b_value_upper[0]), output_element_t(b_value_lower[1]), output_element_t(b_value_upper[1]), output_element_t(b_value_lower[2]), output_element_t(b_value_upper[2]), output_element_t(b_value_lower[3]), output_element_t(b_value_upper[3]));\n"
" let b_dequantized_values = (b_quantized_values - mat2x4<output_element_t>(";
for (int i = 0; i < 8; i++) {
shader.MainFunctionBody() << "zero_point";
if (i < 7) {
shader.MainFunctionBody() << ", ";
}
}
shader.MainFunctionBody() << ")) * scale;\n";
for (uint32_t i = 0; i < tile_m; i++) {
shader.MainFunctionBody() << " inter_results[" << i << "][local_id.y][local_id.x] += dot(sub_a[" << i << "][word_offset], b_dequantized_values[0]) + dot(sub_a[" << i << "][word_offset + 1], b_dequantized_values[1]);\n";
}
shader.MainFunctionBody() << " word_offset += " << 8 / a.NumComponents() << ";\n"
<< " }\n"
" workgroupBarrier();\n"
" }\n"
<< " if (local_id.y < " << tile_m << ") {\n"
<< " var output_value = output_value_t(0);\n"
<< " for (var b = 0u; b < " << WorkgroupSizeX() << "; b++) {\n"
<< " output_value += inter_results[local_id.y][local_id.x][b];\n"
" }\n"
" if (row + local_id.y < uniforms.output_shape[1] && col + local_id.x < uniforms.output_shape[2]) {\n"
<< " " << y.SetByIndices("output_indices_t(batch, row + local_id.y, col + local_id.x)", "output_value") << ";\n"
<< " }\n"
" }\n";
return Status::OK();
}

Status MatMulNBits::ComputeInternal(onnxruntime::webgpu::ComputeContext& context) const {
const Tensor* a = context.Input(0);
const Tensor* b = context.Input(1);
Expand Down Expand Up @@ -477,9 +574,34 @@
block_size == 32;
const bool has_zero_points = zero_points != nullptr;

if (use_block32 && batch_count == 1 &&
components_a == 4 && components_b == 4 &&
!has_zero_points && M >= kMinSequenceLengthForPrefillOptimization) {
if (M > 1 && components_a == 4 && block_size == 32) {
MatMulNBitsWithLargeMProgram program{gsl::narrow<int>(components_b), has_zero_points};
components = 1;
const uint32_t tile_m = 4;
Fixed Show fixed Hide fixed
constexpr uint32_t workgroup_size = 64;
const uint32_t workgroup_y = 8;
const uint32_t workgroup_x = workgroup_size / workgroup_y;
Fixed Show fixed Hide fixed
program.SetWorkgroupSize(workgroup_x, workgroup_y, 1);
program.SetDispatchGroupSize((N + workgroup_y - 1) / workgroup_y,
(M + tile_m - 1) / tile_m,
batch_count);

TensorShape reshaped_a_shape{batch_count, M, K / components_a};
TensorShape reshaped_b_shape{N, n_blocks_per_col, blob_size_in_words / components_b};
TensorShape reshaped_y_shape{batch_count, M, N / components};

program
.AddInputs({{a, ProgramTensorMetadataDependency::TypeAndRank, reshaped_a_shape, gsl::narrow<int>(components_a)},
{b, ProgramTensorMetadataDependency::TypeAndRank, reshaped_b_shape, gsl::narrow<int>(components_b * 4)},
{scales, ProgramTensorMetadataDependency::None}})
.AddOutput({y, ProgramTensorMetadataDependency::TypeAndRank, reshaped_y_shape, gsl::narrow<int>(components)});
if (has_zero_points) {
program.AddInput({zero_points, ProgramTensorMetadataDependency::None, {(zero_points->Shape().Size() + 3) / 4}, 4});
}
return context.RunProgram(program);
} else if (use_block32 && batch_count == 1 &&
components_a == 4 && components_b == 4 &&
!has_zero_points && M >= kMinSequenceLengthForPrefillOptimization) {
MatMulNBitsProgramPrefill program;
constexpr int32_t tile_size = 16;
// subgroup_size here controls how many elements of the hidden dimension we load in a cycle.
Expand Down
14 changes: 14 additions & 0 deletions onnxruntime/contrib_ops/webgpu/quantization/matmul_nbits.h
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,20 @@ class MatMulNBitsProgram final : public Program<MatMulNBitsProgram> {
bool use_block32_;
};

class MatMulNBitsWithLargeMProgram final : public Program<MatMulNBitsWithLargeMProgram> {
public:
MatMulNBitsWithLargeMProgram(int components_b, bool has_zero_points) : Program{"MatMulNBitsWithLargeM"},
components_b_{components_b},
has_zero_points_{has_zero_points} {
}

Status GenerateShaderCode(ShaderHelper& sh) const override;

private:
int components_b_;
bool has_zero_points_;
};

class MatMulNBitsProgramPrefill final : public Program<MatMulNBitsProgramPrefill> {
public:
MatMulNBitsProgramPrefill() : Program{"MatMulNBitsPrefill"} {
Expand Down
Loading