Low-bit & Hardware-aware Quantization Training
Methods | Models | Acc | Precision | Dataset |
---|---|---|---|---|
FP | ResNet-20 | 92.32 | fp32 | CIFAR10 |
FP8 | ResNet-20 | 92.21 | fp8 | CIFAR10 |
Unified | ResNet-20 | 91.95 | int8 | CIFAR10 |
Distributed | ResNet-20 | 92.76 | int8 | CIFAR10 |
Methods | Models | Acc | Precision | Dataset |
---|---|---|---|---|
FP | MobileNetV2 | 94.39 | fp32 | CIFAR10 |
DoReFa | MobileNetV2 | 91.03 | int8 | CIFAR10 |
WAGEUBN | MobileNetV2 | 92.32 | int8 | CIFAR10 |
SBM | MobileNetV2 | 93.57 | int8 | CIFAR10 |
CPT | MobileNetV2 | 93.76 | int8 | CIFAR10 |
Unified | MobileNetV2 | 93.38 | int8 | CIFAR10 |
Distributed | MobileNetV2 | 94.37 | int8 | CIFAR10 |
Methods | Models | Acc | Precision | Dataset |
---|---|---|---|---|
FP | InceptionV3 | 94.89 | fp32 | CIFAR10 |
Unified | InceptionV3 | 95.00 | int8 | CIFAR10 |
Distributed | InceptionV3 | 95.21 | int8 | CIFAR10 |
Methods | Models | Acc | Precision | Dataset |
---|---|---|---|---|
DoReFa | MobileNetV2 | 70.17 | int8 | CIFAR100 |
WAGEUBN | MobileNetV2 | 71.45 | int8 | CIFAR100 |
SBM | MobileNetV2 | 75.28 | int8 | CIFAR100 |
CPT | MobileNetV2 | 75.65 | int8 | CIFAR100 |
Methods | Models | Acc | Precision | Dataset |
---|---|---|---|---|
DoReFa | ResNet-74 | 69.31 | int8 | CIFAR100 |
WAGEUBN | ResNet-74 | 69.61 | int8 | CIFAR100 |
SBM | ResNet-74 | 71.44 | int8 | CIFAR100 |
CPT | ResNet-74 | 72.35 | int8 | CIFAR100 |
- full-precision baseline for CIFAR10/CIFAR100
- A Simple int8 quantization training Framework
- CPT baseline for CIFAR10/CIFAR100