Skip to content

Commit

Permalink
chore: run Batteries linter on Lean (#6364)
Browse files Browse the repository at this point in the history
This PR makes fixes suggested by the Batteries environment linters,
particularly `simpNF`, and `unusedHavesSuffices`.
  • Loading branch information
kim-em authored Dec 11, 2024
1 parent 8709ca3 commit ccc6d76
Show file tree
Hide file tree
Showing 28 changed files with 111 additions and 166 deletions.
4 changes: 2 additions & 2 deletions src/Init/Control/Lawful/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -106,7 +106,7 @@ theorem seq_eq_bind_map {α β : Type u} [Monad m] [LawfulMonad m] (f : m (α
theorem bind_congr [Bind m] {x : m α} {f g : α → m β} (h : ∀ a, f a = g a) : x >>= f = x >>= g := by
simp [funext h]

@[simp] theorem bind_pure_unit [Monad m] [LawfulMonad m] {x : m PUnit} : (x >>= fun _ => pure ⟨⟩) = x := by
theorem bind_pure_unit [Monad m] [LawfulMonad m] {x : m PUnit} : (x >>= fun _ => pure ⟨⟩) = x := by
rw [bind_pure]

theorem map_congr [Functor m] {x : m α} {f g : α → β} (h : ∀ a, f a = g a) : (f <$> x : m β) = g <$> x := by
Expand All @@ -133,7 +133,7 @@ theorem seqLeft_eq_bind [Monad m] [LawfulMonad m] (x : m α) (y : m β) : x <* y
rw [← bind_pure_comp]
simp only [bind_assoc, pure_bind]

@[simp] theorem Functor.map_unit [Monad m] [LawfulMonad m] {a : m PUnit} : (fun _ => PUnit.unit) <$> a = a := by
theorem Functor.map_unit [Monad m] [LawfulMonad m] {a : m PUnit} : (fun _ => PUnit.unit) <$> a = a := by
simp [map]

/--
Expand Down
6 changes: 2 additions & 4 deletions src/Init/Data/Array/Attach.lean
Original file line number Diff line number Diff line change
Expand Up @@ -150,7 +150,6 @@ theorem attach_map_coe (l : Array α) (f : α → β) :
theorem attach_map_val (l : Array α) (f : α → β) : (l.attach.map fun i => f i.val) = l.map f :=
attach_map_coe _ _

@[simp]
theorem attach_map_subtype_val (l : Array α) : l.attach.map Subtype.val = l := by
cases l; simp

Expand All @@ -162,7 +161,6 @@ theorem attachWith_map_val {p : α → Prop} (f : α → β) (l : Array α) (H :
((l.attachWith p H).map fun i => f i.val) = l.map f :=
attachWith_map_coe _ _ _

@[simp]
theorem attachWith_map_subtype_val {p : α → Prop} (l : Array α) (H : ∀ a ∈ l, p a) :
(l.attachWith p H).map Subtype.val = l := by
cases l; simp
Expand Down Expand Up @@ -204,8 +202,8 @@ theorem pmap_ne_empty_iff {P : α → Prop} (f : (a : α) → P a → β) {xs :
(H : ∀ (a : α), a ∈ xs → P a) : xs.pmap f H ≠ #[] ↔ xs ≠ #[] := by
cases xs; simp

theorem pmap_eq_self {l : Array α} {p : α → Prop} (hp : ∀ (a : α), a ∈ l → p a)
(f : (a : α) → p a → α) : l.pmap f hp = l ↔ ∀ a (h : a ∈ l), f a (hp a h) = a := by
theorem pmap_eq_self {l : Array α} {p : α → Prop} {hp : ∀ (a : α), a ∈ l → p a}
{f : (a : α) → p a → α} : l.pmap f hp = l ↔ ∀ a (h : a ∈ l), f a (hp a h) = a := by
cases l; simp [List.pmap_eq_self]

@[simp]
Expand Down
5 changes: 3 additions & 2 deletions src/Init/Data/Array/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,8 @@ theorem ext' {as bs : Array α} (h : as.toList = bs.toList) : as = bs := by
@[simp] theorem toArrayAux_eq (as : List α) (acc : Array α) : (as.toArrayAux acc).toList = acc.toList ++ as := by
induction as generalizing acc <;> simp [*, List.toArrayAux, Array.push, List.append_assoc, List.concat_eq_append]

@[simp] theorem toList_toArray (as : List α) : as.toArray.toList = as := rfl
-- This does not need to be a simp lemma, as already after the `whnfR` the right hand side is `as`.
theorem toList_toArray (as : List α) : as.toArray.toList = as := rfl

@[simp] theorem size_toArray (as : List α) : as.toArray.size = as.length := by simp [size]

Expand Down Expand Up @@ -208,7 +209,7 @@ instance : EmptyCollection (Array α) := ⟨Array.empty⟩
instance : Inhabited (Array α) where
default := Array.empty

@[simp] def isEmpty (a : Array α) : Bool :=
def isEmpty (a : Array α) : Bool :=
a.size = 0

@[specialize]
Expand Down
6 changes: 2 additions & 4 deletions src/Init/Data/Array/BasicAux.lean
Original file line number Diff line number Diff line change
Expand Up @@ -32,10 +32,8 @@ private theorem List.of_toArrayAux_eq_toArrayAux {as bs : List α} {cs ds : Arra
have := Array.of_push_eq_push ih₂
simp [this]

@[simp] theorem List.toArray_eq_toArray_eq (as bs : List α) : (as.toArray = bs.toArray) = (as = bs) := by
apply propext; apply Iff.intro
· intro h; simpa [toArray] using h
· intro h; rw [h]
theorem List.toArray_eq_toArray_eq (as bs : List α) : (as.toArray = bs.toArray) = (as = bs) := by
simp

def Array.mapM' [Monad m] (f : α → m β) (as : Array α) : m { bs : Array β // bs.size = as.size } :=
go 0 ⟨mkEmpty as.size, rfl⟩ (by simp)
Expand Down
9 changes: 6 additions & 3 deletions src/Init/Data/Array/Bootstrap.lean
Original file line number Diff line number Diff line change
Expand Up @@ -93,11 +93,14 @@ theorem foldrM_eq_reverse_foldlM_toList [Monad m] (f : α → β → m β) (init
@[simp] theorem appendList_eq_append
(arr : Array α) (l : List α) : arr.appendList l = arr ++ l := rfl

@[simp] theorem appendList_toList (arr : Array α) (l : List α) :
@[simp] theorem toList_appendList (arr : Array α) (l : List α) :
(arr ++ l).toList = arr.toList ++ l := by
rw [← appendList_eq_append]; unfold Array.appendList
induction l generalizing arr <;> simp [*]

@[deprecated toList_appendList (since := "2024-12-11")]
abbrev appendList_toList := @toList_appendList

@[deprecated "Use the reverse direction of `foldrM_toList`." (since := "2024-11-13")]
theorem foldrM_eq_foldrM_toList [Monad m]
(f : α → β → m β) (init : β) (arr : Array α) :
Expand Down Expand Up @@ -149,7 +152,7 @@ abbrev pop_data := @pop_toList
@[deprecated toList_append (since := "2024-09-09")]
abbrev append_data := @toList_append

@[deprecated appendList_toList (since := "2024-09-09")]
abbrev appendList_data := @appendList_toList
@[deprecated toList_appendList (since := "2024-09-09")]
abbrev appendList_data := @toList_appendList

end Array
2 changes: 1 addition & 1 deletion src/Init/Data/Array/DecidableEq.lean
Original file line number Diff line number Diff line change
Expand Up @@ -42,7 +42,7 @@ theorem rel_of_isEqv {r : α → α → Bool} {a b : Array α} :
· exact fun h' => ⟨h, fun i => rel_of_isEqvAux h (Nat.le_refl ..) h'⟩
· intro; contradiction

theorem isEqv_iff_rel (a b : Array α) (r) :
theorem isEqv_iff_rel {a b : Array α} {r} :
Array.isEqv a b r ↔ ∃ h : a.size = b.size, ∀ (i : Nat) (h' : i < a.size), r (a[i]) (b[i]'(h ▸ h')) :=
⟨rel_of_isEqv, fun ⟨h, w⟩ => by
simp only [isEqv, ← h, ↓reduceDIte]
Expand Down
55 changes: 20 additions & 35 deletions src/Init/Data/Array/Lemmas.lean
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ theorem ne_empty_of_size_pos (h : 0 < l.size) : l ≠ #[] := by
cases l
simpa using List.ne_nil_of_length_pos h

@[simp] theorem size_eq_zero : l.size = 0 ↔ l = #[] :=
theorem size_eq_zero : l.size = 0 ↔ l = #[] :=
⟨eq_empty_of_size_eq_zero, fun h => h ▸ rfl⟩

theorem size_pos_of_mem {a : α} {l : Array α} (h : a ∈ l) : 0 < l.size := by
Expand Down Expand Up @@ -224,7 +224,7 @@ theorem getElem?_singleton (a : α) (i : Nat) : #[a][i]? = if i = 0 then some a

/-! ### mem -/

@[simp] theorem not_mem_empty (a : α) : ¬ a ∈ #[] := nofun
theorem not_mem_empty (a : α) : ¬ a ∈ #[] := by simp

@[simp] theorem mem_push {a : Array α} {x y : α} : x ∈ a.push y ↔ x ∈ a ∨ x = y := by
simp only [mem_def]
Expand Down Expand Up @@ -899,8 +899,8 @@ theorem singleton_eq_toArray_singleton (a : α) : #[a] = [a].toArray := rfl

@[simp] theorem mkEmpty_eq (α n) : @mkEmpty α n = #[] := rfl

@[simp] theorem size_mk (as : List α) : (Array.mk as).size = as.length := by simp [size]

@[deprecated size_toArray (since := "2024-12-11")]
theorem size_mk (as : List α) : (Array.mk as).size = as.length := by simp [size]

theorem foldrM_push [Monad m] (f : α → β → m β) (init : β) (arr : Array α) (a : α) :
(arr.push a).foldrM f init = f a init >>= arr.foldrM f := by
Expand Down Expand Up @@ -969,11 +969,6 @@ where
@[simp] theorem appendList_cons (arr : Array α) (a : α) (l : List α) :
arr ++ (a :: l) = arr.push a ++ l := Array.ext' (by simp)

@[simp] theorem toList_appendList (arr : Array α) (l : List α) :
(arr ++ l).toList = arr.toList ++ l := by
cases arr
simp

theorem foldl_toList_eq_flatMap (l : List α) (acc : Array β)
(F : Array β → α → Array β) (G : α → List β)
(H : ∀ acc a, (F acc a).toList = acc.toList ++ G a) :
Expand Down Expand Up @@ -1014,7 +1009,7 @@ theorem getElem?_len_le (a : Array α) {i : Nat} (h : a.size ≤ i) : a[i]? = no

theorem get!_eq_getD [Inhabited α] (a : Array α) : a.get! n = a.getD n default := rfl

@[simp] theorem get!_eq_getElem? [Inhabited α] (a : Array α) (i : Nat) :
theorem get!_eq_getElem? [Inhabited α] (a : Array α) (i : Nat) :
a.get! i = (a.get? i).getD default := by
by_cases p : i < a.size <;>
simp only [get!_eq_getD, getD_eq_get?, getD_getElem?, p, get?_eq_getElem?]
Expand Down Expand Up @@ -1192,8 +1187,8 @@ theorem getElem?_swap (a : Array α) (i j : Nat) (hi hj) (k : Nat) : (a.swap i j
@[simp] theorem swapAt_def (a : Array α) (i : Nat) (v : α) (hi) :
a.swapAt i v hi = (a[i], a.set i v) := rfl

@[simp] theorem size_swapAt (a : Array α) (i : Nat) (v : α) (hi) :
(a.swapAt i v hi).2.size = a.size := by simp [swapAt_def]
theorem size_swapAt (a : Array α) (i : Nat) (v : α) (hi) :
(a.swapAt i v hi).2.size = a.size := by simp

@[simp]
theorem swapAt!_def (a : Array α) (i : Nat) (v : α) (h : i < a.size) :
Expand Down Expand Up @@ -1687,13 +1682,9 @@ theorem mem_append_right {a : α} (l₁ : Array α) {l₂ : Array α} (h : a ∈
@[simp] theorem size_append (as bs : Array α) : (as ++ bs).size = as.size + bs.size := by
simp only [size, toList_append, List.length_append]

@[simp] theorem empty_append (as : Array α) : #[] ++ as = as := by
cases as
simp
theorem empty_append (as : Array α) : #[] ++ as = as := by simp

@[simp] theorem append_empty (as : Array α) : as ++ #[] = as := by
cases as
simp
theorem append_empty (as : Array α) : as ++ #[] = as := by simp

theorem getElem_append {as bs : Array α} (h : i < (as ++ bs).size) :
(as ++ bs)[i] = if h' : i < as.size then as[i] else bs[i - as.size]'(by simp at h; omega) := by
Expand Down Expand Up @@ -2049,8 +2040,7 @@ namespace List
Our goal is to have `simp` "pull `List.toArray` outwards" as much as possible.
-/

@[simp] theorem toListRev_toArray (l : List α) : l.toArray.toListRev = l.reverse := by
simp
theorem toListRev_toArray (l : List α) : l.toArray.toListRev = l.reverse := by simp

@[simp] theorem take_toArray (l : List α) (n : Nat) : l.toArray.take n = (l.take n).toArray := by
apply ext'
Expand All @@ -2074,10 +2064,8 @@ Our goal is to have `simp` "pull `List.toArray` outwards" as much as possible.
apply ext'
simp

@[simp] theorem uset_toArray (l : List α) (i : USize) (a : α) (h : i.toNat < l.toArray.size) :
l.toArray.uset i a h = (l.set i.toNat a).toArray := by
apply ext'
simp
theorem uset_toArray (l : List α) (i : USize) (a : α) (h : i.toNat < l.toArray.size) :
l.toArray.uset i a h = (l.set i.toNat a).toArray := by simp

@[simp] theorem swap_toArray (l : List α) (i j : Nat) {hi hj}:
l.toArray.swap i j hi hj = ((l.set i l[j]).set j l[i]).toArray := by
Expand Down Expand Up @@ -2113,7 +2101,8 @@ theorem filterMap_toArray (f : α → Option β) (l : List α) :
l.toArray.filterMap f = (l.filterMap f).toArray := by
simp

@[simp] theorem flatten_toArray (l : List (List α)) : (l.toArray.map List.toArray).flatten = l.flatten.toArray := by
@[simp] theorem flatten_toArray (l : List (List α)) :
(l.toArray.map List.toArray).flatten = l.flatten.toArray := by
apply ext'
simp [Function.comp_def]

Expand Down Expand Up @@ -2321,19 +2310,15 @@ end List

namespace Array

@[simp] theorem toList_fst_unzip (as : Array (α × β)) :
as.unzip.1.toList = as.toList.unzip.1 := by
cases as
simp
theorem toList_fst_unzip (as : Array (α × β)) :
as.unzip.1.toList = as.toList.unzip.1 := by simp

@[simp] theorem toList_snd_unzip (as : Array (α × β)) :
as.unzip.2.toList = as.toList.unzip.2 := by
cases as
simp
theorem toList_snd_unzip (as : Array (α × β)) :
as.unzip.2.toList = as.toList.unzip.2 := by simp

@[simp] theorem flatMap_empty {β} (f : α → Array β) : (#[] : Array α).flatMap f = #[] := rfl

@[simp] theorem flatMap_toArray_cons {β} (f : α → Array β) (a : α) (as : List α) :
theorem flatMap_toArray_cons {β} (f : α → Array β) (a : α) (as : List α) :
(a :: as).toArray.flatMap f = f a ++ as.toArray.flatMap f := by
simp [flatMap]
suffices ∀ cs, List.foldl (fun bs a => bs ++ f a) (f a ++ cs) as =
Expand All @@ -2349,7 +2334,7 @@ namespace Array
| nil => simp
| cons a as ih =>
apply ext'
simp [ih]
simp [ih, flatMap_toArray_cons]


end Array
Expand Down
Loading

0 comments on commit ccc6d76

Please sign in to comment.