Skip to content

kylebaron/klava

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

64 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

klava: parameter optimzation with mrgsolve

Installation

devtools:::install_github("kylebaron/klava")

Example

library(dplyr)
library(mrgsolve)
library(nloptr)
library(ggplot2)
library(rlang)
library(klava)

Load an mrgsolve model

mod <- modlib("pk2")
. Building pk2 ... done.

Grab some data

data <- readRDS("inst/dat/2cmtA.RDS")

ggplot(data, aes(time,DV)) + geom_point() + theme_bw()

The data is more or less in NONMEM-type format

data
. # A tibble: 13 × 11
.       ID  time  evid   mdv   amt   cmt    ss    ii  addl  rate    DV
.    <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
.  1     1  0        1     1   100     1     0     0     0     0  0   
.  2     1  0.25     0     0     0     0     0     0     0     0  1.06
.  3     1  1        0     0     0     0     0     0     0     0  2.90
.  4     1  2        0     0     0     0     0     0     0     0  3.57
.  5     1  3        0     0     0     0     0     0     0     0  3.49
.  6     1  4        0     0     0     0     0     0     0     0  3.25
.  7     1  5        0     0     0     0     0     0     0     0  3.18
.  8     1  6        0     0     0     0     0     0     0     0  2.92
.  9     1 12        0     0     0     0     0     0     0     0  2.17
. 10     1 18        0     0     0     0     0     0     0     0  1.78
. 11     1 24        0     0     0     0     0     0     0     0  1.53
. 12     1 30        0     0     0     0     0     0     0     0  1.27
. 13     1 36        0     0     0     0     0     0     0     0  1.00

Define a parameter list

theta <- all_log(CL = 0.5, V2 = 50, Q = 1.1, V3 = 30, KA = 1.1, sigma=1.1)

This is a self-transforming vector

theta
.   name value tr fx
.     CL   0.5  u   
.     V2  50.0  u   
.      Q   1.1  u   
.     V3  30.0  u   
.     KA   1.1  u   
.  sigma   1.1  u
trans(theta)
.   name       value tr fx
.     CL -0.69314718  t   
.     V2  3.91202301  t   
.      Q  0.09531018  t   
.     V3  3.40119738  t   
.     KA  0.09531018  t   
.  sigma  0.09531018  t

That also supports fixed values

foo <- quick_par(CL = log(1), KA = fixed(1.1), F1 = logit(0.8))

foo
.  name value tr fx
.    CL   1.0  u   
.    KA   1.1  u  *
.    F1   0.8  u
trans(foo)
.  name    value tr fx
.    CL 0.000000  t   
.    KA 1.100000  t  *
.    F1 1.386294  t
untrans(trans(foo))
.  name value tr fx
.    CL   1.0  u   
.    KA   1.1  u  *
.    F1   0.8  u

Fit the model

fit <- fit_nl(theta, data, mod = mod, pred_name= "CP", cov_step=TRUE,
              pred_initial=TRUE)
. Checking data ...

. Fitting with els ...done.
. Generating predictions.
. Trying cov step ... success.

Result

fit$tab
. # A tibble: 6 × 5
.   par   start    final        lb       ub
.   <chr> <dbl>    <dbl>     <dbl>    <dbl>
. 1 CL      0.5  0.955    0.900     1.01   
. 2 V2     50   21.5     19.2      24.0    
. 3 Q       1.1  1.89     1.10      3.27   
. 4 V3     30    8.87     7.01     11.2    
. 5 KA      1.1  1.10     0.941     1.28   
. 6 sigma   1.1  0.00153  0.000687  0.00340

Diagnostics

plot(fit)

ggplot(fit$data, aes(time,RES)) + geom_point() + 
  geom_hline(yintercept=0) + theme_bw()

ggplot(fit$data, aes(PRED,DV)) + geom_point() + 
  geom_abline(intercept = 0, slope = 1) + theme_bw()

Objective functions

Extended Least Squares - ELS

fit <- fit_nl(theta, data, mod, pred_name= "CP", ofv=els)
. Checking data ...

. Fitting with els ...done.
. Generating predictions.

Normal likelihood

fit <- fit_nl(theta, data, mod, pred_name= "CP", ofv=ml)
. Checking data ...

. Fitting with ml ...done.
. Generating predictions.

Ordinary Least Squares - OLS

fit <- fit_nl(theta, data, mod, pred_name= "CP", ofv=ols)
. Checking data ...

. Fitting with ols ...done.
. Generating predictions.

Weighted Least Squares - WLS

fit <- fit_nl(theta, data, mod, pred_name= "CP", ofv=wls)
. Checking data ...

. Fitting with wls ...done.
. Generating predictions.

About

Parameter optimization with mrgsolve

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published