Skip to content

Commit

Permalink
in
Browse files Browse the repository at this point in the history
  • Loading branch information
ju-liu committed Feb 19, 2024
1 parent bcdbdd2 commit f732132
Show file tree
Hide file tree
Showing 3 changed files with 86 additions and 0 deletions.
Binary file added teaching/FEM-2024-Spring/Syllabus.pdf
Binary file not shown.
Binary file added teaching/FEM-2024-Spring/hw/HW-1.pdf
Binary file not shown.
86 changes: 86 additions & 0 deletions teaching/FEM-2024-Spring/index.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
---
layout: default_course
description: Research of Dr. Ju Liu
---

<div class="course">
<h2>MAE5007 Advanced Computational Solid Mechanics</h2>

<h3>Instructor</h3>
<ul>
<li> <a href=https://ju-liu.github.io>Dr. Ju Liu</a>, Assistant Professor of MAE Department</li>
<li> Office: Room 1004 North Engineering Building </li>
<li> Contact by <a href="mailto:[email protected]">email</a> </li>
</ul>

<h3>Teaching Assistants</h3>
<p>TBA</p>

<h3>Goals</h3>
<p>
This course aims at providing students an in-depth understanding of the finite element method with a focus on nonlinear and inelastic problems. Theoretical foundation as well as the implementation of the finite element method will be covered with applications primarily in the static and dynamic analysis of solids and structures.
</p>

<h3>Prerequisites</h3>
<p>Calculus, Linear algebra, and MATLAB programming are required. It is preferrable to have some basic knowlegde of the finite element method and elasticity.</p>

<h3>Grading policy</h3>
<ul>
<li>Homework assignment: 40%</li>
<li>Mid-term exam: 25%</li>
<li>Final presentation &amp; report: 32% [<a href="misc/final_presentation_list_of_papers.pdf">list of journal articles</a>] </li>
<li>Class participation: 3%</li>
</ul>

<h3>Schedule</h3>
<ul>
<li>Lecture 01 - Heat equation: Strong- and weak-form problems. [<a href="notes/Lecture-01.pdf">notes</a>] </li>
<li>Lecture 02 - Heat equation: Galerkin formulation. [<a href="notes/Lecture-02.pdf">notes</a>]</li>
<li>Lecture 03 - Heat equation: Local assembly procedure. [<a href="notes/Lecture-03.pdf">notes</a>]</li>
<li>Lecture 04 - Heat equation: Formulation of the nonlinear problem I. [<a href="notes/Lecture-04.pdf">notes</a>]</li>
<!--<li>Lecture 05 - Solution algorithm for nonlinear problems: Newton-type methods. [<a href="notes/Lecture-05.pdf">notes</a>]</li>
<li>Lecture 06 - Solution algorithm for nonlinear problems: Line-search and BFGS. [<a href="notes/Lecture-06.pdf">notes</a>]</li>
<li>Lecture 07 - Heat equation: Formulation of the nonlinear problem II. [<a href="notes/Lecture-07.pdf">notes</a>]</li>
<li>Lecture 08 - Small-strain nonlinear elastostatics. [<a href="notes/Lecture-08.pdf">notes</a>]</li>
<li>Lecture 09 - Finite-strain elasticity: Kinematics. [<a href="notes/Lecture-09.pdf">notes</a>]</li>
<li>Lecture 10 - Finite-strain elasticity: Balance equations and linearization. [<a href="notes/Lecture-10.pdf">notes</a>]</li>
<li>Lecture 11 - Finite-strain elasticity: Constitutive theory. [<a href="notes/Lecture-11.pdf">notes</a>]</li>
<li>Lecture 12 - Finite-strain elasticity: Dynamics. [<a href="notes/Lecture-12.pdf">notes</a>]</li>
<li>Lecture 13 - Viscoelasticity: Rheological model. [<a href="notes/Lecture-13.pdf">notes</a>]</li>
<li>Lecture 14 - Viscoelasticity: Finite deformation linear viscoelastic model. [<a href="notes/Lecture-14.pdf">notes</a>]</li>
<li>Lecture 15 - Viscoelasticity: Nonlinear viscoelastic model. [<a
href="notes/Lecture-15.pdf">notes</a>]</li>-->
</ul>

<h3>Assignments</h3>
<ul>
<li><a href="hw/HW-01.pdf">Assignment 1</a> - Due Feb. 27 2023.</li>
<!--<li><a href="hw/HW-02.pdf">Assignment 2</a> - Due Mar. 13 2023.</li>
<li><a href="hw/HW-03.pdf">Assignment 3</a> - Due Mar. 27 2023.</li>
<li><a href="hw/HW-04.pdf">Assignment 4</a> - Due Apr. 10 2023.</li>
<li><a href="hw/HW-05.pdf">Assignment 5</a> - Due Apr. 24 2023.</li>
<li><a href="hw/HW-06.pdf">Assignment 6</a> - Due May 08 2023.</li>
<li><a href="hw/HW-07.pdf">Assignment 7</a> - Due May 22 2023.</li>
<li><a href="hw/HW-08.pdf">Assignment 8</a> - Due June 05 2023.</li>-->
</ul>

<!--
<h3>Codes</h3>
<ul>
<li><a href="https://github.com/M3C-Lab/FEM-tutorial">Code repository</a> This is a suite of MATLAB codes for FEM study. FEM analysis. One can gain an understanding of the standard FEM data structure, assembly procedures, and error estimate.</li>
</ul>
-->

<h3>References</h3>
<ul>
<li>The Finite Element Method: linear static and dynamic finite element analysis, T.J.R. Hughes, Dover 2000. [<a href="https://item.jd.com/1130427437.html">JD</a>]</li>
<li>Computational Inelasticity, J.C. Simo and T.J.R. Hughes, Springer 2000. [<a href="https://item.jd.com/10065920505150.html">JD</a>]</li>
<li>Nonlinear Finite Elements for Continua and Structures, W.K. Liu, B. Moran, T. Belytschko, and K. Elkhodary, Wiley, 2014. [<a href="https://e.jd.com/30157766.html?ebook=1">JD</a>]</li>
<li>Computational methods for plasticity: theory and applications, E.A. de
Souza Neto, D. Peric and D.R.J. Owen, John Wiley &amp; Sons, 2008. [<a href="https://item.jd.com/1189907678.html">JD</a>]</li>
<li>Nonlinear solid mechanics: a continuum approach for engineering, G.A.
Holzapfel, John Wiley &amp; Sons, 2000. [<a href="https://item.jd.com/1104901575.html">JD</a>]</li>
<li>Methods of applied mathematics, T. Arbogast and J.L. Bona. [<a href="https://web.ma.utexas.edu/users/arbogast/appMath08c.pdf">Link</a>]</li>
</ul>

</div>

0 comments on commit f732132

Please sign in to comment.