Skip to content

Implementations of various Relief-based algorithms in Julia

License

Notifications You must be signed in to change notification settings

jernejvivod/Relief.jl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Relief.jl

Relief.jl provides implementations of various Relief-based feature selection algorithms in Julia. These include:

  • Relief
  • ReliefF
  • ReliefSeq
  • ReliefMSS
  • SURF
  • SURFstar
  • MultiSURF
  • MultiSURF*
  • SWRF*
  • BoostedSURF
  • Iterative Relief
  • IRelief
  • Evaporative Cooling ReliefF
  • VLSRelief
  • TuRF

The documentation and references can be viewed in help mode:

julia> using Relief

help?> swrfstar
search: swrfstar

  swrfstar(data::Array{<:Real,2}, target::Array{<:Integer, 1}, m::Signed=-1, 
                dist_func::Any=(e1, e2) -> sum(abs.(e1 .- e2), dims=2); 
                f_type::String="continuous")::Array{Float64,1}

  Compute feature weights using SWRF* algorithm. The f_type argument specifies whether the features are continuous or discrete and can either have the value of "continuous" or "discrete".

  ───────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────

  Reference:
  ≡≡≡≡≡≡≡≡≡≡≡≡

    •    Matthew E. Stokes and Shyam Visweswaran. 

  Application of a spatially-weighted Relief algorithm for ranking genetic predictors of disease. BioData mining, 5(1):20–20, Dec 2012. 23198930[pmid].

Online documentation will be provided soon.