Survey of machine learning methods to predict renewable energy grid load and output.
Data()
Data.get_data(datafile: str, powerfile: str=None, dropna: bool=True, rescale_power: bool=True)
- datafile (str): location of 4y historical weather data file.
- powerfile (str): location of power output file from solar stations.
- rescale_power (bool, default: true): Whether to rescale power from W to kW.
Data.transform(lag: list or str, resample: str=None, scaler: str=None, copy: bool=True)
- lag: Input list of choice from {15minutes|minute|day|week|month|season|year} Input choice of {day|week|month|season|year} for differencing or list of multiple for multi-order differencing.
- scaler: Use scikit-learns scaler to standardize or normalize data. choose from [ minmax | standard ]
- resample: Numpy frequency string. Frequency to resample data to. Default frequency is inferred from powerfile.
- Base object for data loading and analyzing.
- Method to retrieve and format data from CSV.
-
Make input data stationary