Skip to content

Survey of machine learning methods to predict renewable energy grid load and output.

Notifications You must be signed in to change notification settings

jeff-zimmerman/RenewML_Energy

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RenewML_Energy

Survey of machine learning methods to predict renewable energy grid load and output.

Data Module

  • Data()
    • Base object for data loading and analyzing.
  • Data.get_data(datafile: str, powerfile: str=None, dropna: bool=True, rescale_power: bool=True)
    • Method to retrieve and format data from CSV.
    • datafile (str): location of 4y historical weather data file.
    • powerfile (str): location of power output file from solar stations.
    • rescale_power (bool, default: true): Whether to rescale power from W to kW.
  • Data.transform(lag: list or str, resample: str=None, scaler: str=None, copy: bool=True)
    • Make input data stationary
    • lag: Input list of choice from {15minutes|minute|day|week|month|season|year} Input choice of {day|week|month|season|year} for differencing or list of multiple for multi-order differencing.
    • scaler: Use scikit-learns scaler to standardize or normalize data. choose from [ minmax | standard ]
    • resample: Numpy frequency string. Frequency to resample data to. Default frequency is inferred from powerfile.

VAR model

About

Survey of machine learning methods to predict renewable energy grid load and output.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages