Native operations for nd4j. Build using cmake
- GCC 4.9 or 5.x
- CUDA 7.5 or 8.0 (if desired)
- CMake 3.2
There's few additional arguments for buildnativeoperations.sh
script you could use:
-a // shortcut for -march/-mtune, i.e. -a native
-b release OR -b debug // enables/desables debug builds. release is considered by default
-cc // CUDA-only argument, builds only binaries for target GPU architecture. use this for fast builds
You can find the compute capability for your card on the NVIDIA website here.
For example, a GTX 1080 has compute capability 6.1, for which you would use -cc 61
(note no decimal point).
Download the NDK, extract it somewhere, and execute the following commands, replacing android-xxx
with either android-arm
or android-x86
:
git clone https://github.com/deeplearning4j/libnd4j
git clone https://github.com/deeplearning4j/nd4j
export ANDROID_NDK=/path/to/android-ndk/
cd libnd4j
bash buildnativeoperations.sh -platform android-xxx
cd ../nd4j
mvn clean install -Djavacpp.platform=android-xxx -DskipTests -pl '!:nd4j-cuda-8.0,!:nd4j-cuda-8.0-platform,!:nd4j-tests'
Run ./setuposx.sh (Please ensure you have brew installed)
Depends on the distro - ask in the earlyadopters channel for specifics on distro
wget http://developer.download.nvidia.com/compute/cuda/7.5/Prod/local_installers/cuda-repo-ubuntu1504-7-5-local_7.5-18_amd64.deb
sudo dpkg -i cuda-repo-ubuntu1504-7-5-local_7.5-18_amd64.deb
sudo apt-get update
sudo apt-get install cuda
sudo apt-get install cmake
sudo apt-get install gcc-4.9
sudo apt-get install g++-4.9
sudo apt-get install git
git clone https://github.com/deeplearning4j/libnd4j
cd libnd4j/
export LIBND4J_HOME=~/libnd4j/
sudo rm /usr/bin/gcc
sudo rm /usr/bin/g++
sudo ln -s /usr/bin/gcc-4.9 /usr/bin/gcc
sudo ln -s /usr/bin/g++-4.9 /usr/bin/g++
./buildnativeoperations.sh
./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
sudo apt install cmake
sudo apt install nvidia-cuda-dev nvidia-cuda-toolkit nvidia-361
export TRICK_NVCC=YES
./buildnativeoperations.sh
./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
The standard development headers are needed.
yum install centos-release-scl-rh epel-release
yum install devtoolset-3-toolchain maven30 cmake3 git
scl enable devtoolset-3 maven30 bash
./buildnativeoperations.sh
./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
See Windows.md
-
Set a LIBND4J_HOME as an environment variable to the libnd4j folder you've obtained from GIT
- Note: this is required for building nd4j as well.
-
Setup cpu followed by gpu, run the following on the command line:
-
For standard builds:
./buildnativeoperations.sh ./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
-
For Debug builds:
./buildnativeoperations.sh blas -b debug ./buildnativeoperations.sh blas -c cuda -сс YOUR_DEVICE_ARCH -b debug
-
For release builds (default):
./buildnativeoperations.sh ./buildnativeoperations.sh -c cuda -сс YOUR_DEVICE_ARCH
-
We can link with MKL either at build time, or at runtime with binaries initially linked with another BLAS implementation such as OpenBLAS. In either case, simply add the path containing libmkl_rt.so
(or mkl_rt.dll
on Windows), say /path/to/intel64/lib/
, to the LD_LIBRARY_PATH
environment variable on Linux (or PATH
on Windows), and build or run your Java application as usual. If you get an error message like undefined symbol: omp_get_num_procs
, it probably means that libiomp5.so
, libiomp5.dylib
, or libiomp5md.dll
is not present on your system. In that case though, it is still possible to use the GNU version of OpenMP by setting these environment variables on Linux, for example:
export MKL_THREADING_LAYER=GNU
export LD_PRELOAD=/usr/lib64/libgomp.so.1
If on Ubuntu (14.04 or above) or CentOS (6 or above), this repository is also set to create packages for your distribution. Let's assume you have built:
- for the cpu, your command-line was
./buildnativeoperations.sh ...
:
cd blasbuild/cpu
make package
- for the gpu, your command-line was
./buildnativeoperations.sh -c cuda ...
:
cd blasbuild/cuda
make package
The package upload script is in packaging. The upload command for an rpm built for cpu is:
./packages/push_to_bintray.sh myAPIUser myAPIKey deeplearning4j blasbuild/cpu/libnd4j-0.8.0.fc7.3.1611.x86_64.rpm https://github.com/deeplearning4j
The upload command for a deb package built for cuda is:
./packages/push_to_bintray.sh myAPIUser myAPIKey deeplearning4j blasbuild/cuda/libnd4j-0.8.0.fc7.3.1611.x86_64.deb https://github.com/deeplearning4j