Skip to content

TrustRAG:The RAG Framework within Reliable input,Trusted output

Notifications You must be signed in to change notification settings

gomate-community/TrustRAG

Repository files navigation

TrustRAG:The RAG Framework within Reliable input,Trusted output

A Configurable and Modular RAG Framework.

[ English | 中文 ]

Python workflow status codecov pydocstyle PEP8

🔥Introduction to TrustRAG

TrustRAG is a configurable and modular Retrieval-Augmented Generation (RAG) framework designed to provide reliable input and trusted output, ensuring users can obtain high-quality and trustworthy results in retrieval-based question-answering scenarios.

The core design of TrustRAG lies in its high configurability and modularity, allowing users to flexibly adjust and optimize each component according to specific needs to meet the requirements of various application scenarios.

🔨TrustRAG Framework

framework.png

✨Key Features

“Reliable input, Trusted output”

🎉 Changelog

  • Supports vector database engines, such as Milvus and Qdrant.
  • Support for multimodal RAG question-answering, API using GLM-4V-Flash, code available at trustrag/applications/rag_multimodal.py
  • TrustRAG packaging and build, supporting both pip and source installation
  • Added MinerU document parsing: A one-stop open-source high-quality data extraction tool, supporting PDF/webpage/multi-format e-book extraction [20240907]
  • RAPTOR: Recursive tree retriever implementation
  • Support for multiple file parsing and modularity, currently supported file types include: text, docx, ppt, excel, html, pdf, md, etc.
  • Optimized DenseRetriever, supporting index building, incremental appending, and index saving, including saving documents, vectors, and indexes
  • Added ReRank with BGE sorting, Rewriter with HyDE
  • Added Judge with BgeJudge, determining the usefulness of articles 20240711

🚀Quick Start

🛠️ Installation

Method 1: Install via pip

  1. Create a conda environment (optional)
conda create -n trustrag python=3.9
conda activate trustrag
  1. Install dependencies using pip
pip install trustrag   

Method 2: Install from source

  1. Download the source code
git clone https://github.com/gomate-community/TrustRAG.git
  1. Install dependencies
pip install -e . 

🚀 Quick Start

1 Module Overview📝

├── applications
├── modules
|      ├── citation: Answer and evidence citation
|      ├── document: Document parsing and chunking, supports multiple document types
|      ├── generator: Generator
|      ├── judger: Document selection
|      ├── prompt: Prompts
|      ├── refiner: Information summarization
|      ├── reranker: Ranking module
|      ├── retrieval: Retrieval module
|      └── rewriter: Rewriting module

2 Import Modules

import pickle
import pandas as pd
from tqdm import tqdm

from trustrag.modules.document.chunk import TextChunker
from trustrag.modules.document.txt_parser import TextParser
from trustrag.modules.document.utils import PROJECT_BASE
from trustrag.modules.generator.llm import GLM4Chat
from trustrag.modules.reranker.bge_reranker import BgeRerankerConfig, BgeReranker
from trustrag.modules.retrieval.bm25s_retriever import BM25RetrieverConfig
from trustrag.modules.retrieval.dense_retriever import DenseRetrieverConfig
from trustrag.modules.retrieval.hybrid_retriever import HybridRetriever, HybridRetrieverConfig

3 Document Parsing and Chunking

def generate_chunks():
    tp = TextParser()  # Represents txt format parsing
    tc = TextChunker()
    paragraphs = tp.parse(r'H:/2024-Xfyun-RAG/data/corpus.txt', encoding="utf-8")
    print(len(paragraphs))
    chunks = []
    for content in tqdm(paragraphs):
        chunk = tc.chunk_sentences([content], chunk_size=1024)
        chunks.append(chunk)

    with open(f'{PROJECT_BASE}/output/chunks.pkl', 'wb') as f:
        pickle.dump(chunks, f)

Each line in corpus.txt is a news paragraph. You can customize the logic for reading paragraphs. The corpus is from Large Model RAG Intelligent Question-Answering Challenge.

TextChunker is the text chunking program, primarily using InfiniFlow/huqie as the text retrieval tokenizer, suitable for RAG scenarios.

4 Building the Retriever

Configuring the Retriever:

Below is a reference configuration for a hybrid retriever HybridRetriever, where HybridRetrieverConfig is composed of BM25RetrieverConfig and DenseRetrieverConfig.

# BM25 and Dense Retriever configurations
bm25_config = BM25RetrieverConfig(
    method='lucene',
    index_path='indexs/description_bm25.index',
    k1=1.6,
    b=0.7
)
bm25_config.validate()
print(bm25_config.log_config())
dense_config = DenseRetrieverConfig(
    model_name_or_path=embedding_model_path,
    dim=1024,
    index_path='indexs/dense_cache'
)
config_info = dense_config.log_config()
print(config_info)
# Hybrid Retriever configuration
# Since the score frameworks are not on the same dimension, it is recommended to merge them
hybrid_config = HybridRetrieverConfig(
    bm25_config=bm25_config,
    dense_config=dense_config,
    bm25_weight=0.7,  # BM25 retrieval result weight
    dense_weight=0.3  # Dense retrieval result weight
)
hybrid_retriever = HybridRetriever(config=hybrid_config)

Building the Index:

# Build the index
hybrid_retriever.build_from_texts(corpus)
# Save the index
hybrid_retriever.save_index()

If the index is already built, you can skip the above steps and directly load the index:

hybrid_retriever.load_index()

Retrieval Test:

query = "Alipay"
results = hybrid_retriever.retrieve(query, top_k=10)
print(len(results))
# Output results
for result in results:
    print(f"Text: {result['text']}, Score: {result['score']}")

5 Ranking Model

reranker_config = BgeRerankerConfig(
    model_name_or_path=reranker_model_path
)
bge_reranker = BgeReranker(reranker_config)

6 Generator Configuration

glm4_chat = GLM4Chat(llm_model_path)

6 Retrieval Question-Answering

# ====================Retrieval Question-Answering=========================
test = pd.read_csv(test_path)
answers = []
for question in tqdm(test['question'], total=len(test)):
    search_docs = hybrid_retriever.retrieve(question, top_k=10)
    search_docs = bge_reranker.rerank(
        query=question,
        documents=[doc['text'] for idx, doc in enumerate(search_docs)]
    )
    # print(search_docs)
    content = '\n'.join([f'Information[{idx}]:' + doc['text'] for idx, doc in enumerate(search_docs)])
    answer = glm4_chat.chat(prompt=question, content=content)
    answers.append(answer[0])
    print(question)
    print(answer[0])
    print("************************************/n")
test['answer'] = answers

test[['answer']].to_csv(f'{PROJECT_BASE}/output/gomate_baseline.csv', index=False)

🔧Customizing RAG

Building a custom RAG application

import os

from trustrag.modules.document.common_parser import CommonParser
from trustrag.modules.generator.llm import GLMChat
from trustrag.modules.reranker.bge_reranker import BgeReranker
from trustrag.modules.retrieval.dense_retriever import DenseRetriever


class RagApplication():
    def __init__(self, config):
        pass

    def init_vector_store(self):
        pass

    def load_vector_store(self):
        pass

    def add_document(self, file_path):
        pass

    def chat(self, question: str = '', topk: int = 5):
        pass

The module can be found at rag.py

🌐Experience RAG Effects

You can configure the local model path

# Modify to your own configuration!!!
app_config = ApplicationConfig()
app_config.docs_path = "./docs/"
app_config.llm_model_path = "/data/users/searchgpt/pretrained_models/chatglm3-6b/"

retriever_config = DenseRetrieverConfig(
    model_name_or_path="/data/users/searchgpt/pretrained_models/bge-large-zh-v1.5",
    dim=1024,
    index_dir='/data/users/searchgpt/yq/TrustRAG/examples/retrievers/dense_cache'
)
rerank_config = BgeRerankerConfig(
    model_name_or_path="/data/users/searchgpt/pretrained_models/bge-reranker-large"
)

app_config.retriever_config = retriever_config
app_config.rerank_config = rerank_config
application = RagApplication(app_config)
application.init_vector_store()
python app.py

Access via browser: 127.0.0.1:7860 trustrag_demo.png

App backend logs: app_logging3.png

⭐️ Star History

Star History Chart

Research and Development Team

This project is completed by the GoMate team from the Key Laboratory of Network Data Science and Technology, under the guidance of researchers Jiafeng Guo and Yixing Fan.

Technical Exchange Group

Welcome to provide suggestions and report bad cases. Join the group for timely communication, and PRs are also welcome.

If the group is full or for cooperation and exchange, please contact:

Acknowledgments

This project thanks the following open-source projects for their support and contributions:

About

TrustRAG:The RAG Framework within Reliable input,Trusted output

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published