A Configurable and Modular RAG Framework.
[ English | 中文 ]
TrustRAG is a configurable and modular Retrieval-Augmented Generation (RAG) framework designed to provide reliable input and trusted output, ensuring users can obtain high-quality and trustworthy results in retrieval-based question-answering scenarios.
The core design of TrustRAG lies in its high configurability and modularity, allowing users to flexibly adjust and optimize each component according to specific needs to meet the requirements of various application scenarios.
“Reliable input, Trusted output”
- Supports vector database engines, such as Milvus and Qdrant.
- Support for multimodal RAG question-answering, API using GLM-4V-Flash, code available at trustrag/applications/rag_multimodal.py
- TrustRAG packaging and build, supporting both pip and source installation
- Added MinerU document parsing: A one-stop open-source high-quality data extraction tool, supporting PDF/webpage/multi-format e-book extraction
[20240907]
- RAPTOR: Recursive tree retriever implementation
- Support for multiple file parsing and modularity, currently supported file types include:
text
,docx
,ppt
,excel
,html
,pdf
,md
, etc. - Optimized
DenseRetriever
, supporting index building, incremental appending, and index saving, including saving documents, vectors, and indexes - Added
ReRank
with BGE sorting, Rewriter withHyDE
- Added
Judge
with BgeJudge, determining the usefulness of articles20240711
- Create a conda environment (optional)
conda create -n trustrag python=3.9
conda activate trustrag
- Install dependencies using
pip
pip install trustrag
- Download the source code
git clone https://github.com/gomate-community/TrustRAG.git
- Install dependencies
pip install -e .
├── applications
├── modules
| ├── citation: Answer and evidence citation
| ├── document: Document parsing and chunking, supports multiple document types
| ├── generator: Generator
| ├── judger: Document selection
| ├── prompt: Prompts
| ├── refiner: Information summarization
| ├── reranker: Ranking module
| ├── retrieval: Retrieval module
| └── rewriter: Rewriting module
import pickle
import pandas as pd
from tqdm import tqdm
from trustrag.modules.document.chunk import TextChunker
from trustrag.modules.document.txt_parser import TextParser
from trustrag.modules.document.utils import PROJECT_BASE
from trustrag.modules.generator.llm import GLM4Chat
from trustrag.modules.reranker.bge_reranker import BgeRerankerConfig, BgeReranker
from trustrag.modules.retrieval.bm25s_retriever import BM25RetrieverConfig
from trustrag.modules.retrieval.dense_retriever import DenseRetrieverConfig
from trustrag.modules.retrieval.hybrid_retriever import HybridRetriever, HybridRetrieverConfig
def generate_chunks():
tp = TextParser() # Represents txt format parsing
tc = TextChunker()
paragraphs = tp.parse(r'H:/2024-Xfyun-RAG/data/corpus.txt', encoding="utf-8")
print(len(paragraphs))
chunks = []
for content in tqdm(paragraphs):
chunk = tc.chunk_sentences([content], chunk_size=1024)
chunks.append(chunk)
with open(f'{PROJECT_BASE}/output/chunks.pkl', 'wb') as f:
pickle.dump(chunks, f)
Each line in
corpus.txt
is a news paragraph. You can customize the logic for reading paragraphs. The corpus is from Large Model RAG Intelligent Question-Answering Challenge.
TextChunker
is the text chunking program, primarily using InfiniFlow/huqie as the text retrieval tokenizer, suitable for RAG scenarios.
Configuring the Retriever:
Below is a reference configuration for a hybrid retriever HybridRetriever
, where HybridRetrieverConfig
is composed of BM25RetrieverConfig
and DenseRetrieverConfig
.
# BM25 and Dense Retriever configurations
bm25_config = BM25RetrieverConfig(
method='lucene',
index_path='indexs/description_bm25.index',
k1=1.6,
b=0.7
)
bm25_config.validate()
print(bm25_config.log_config())
dense_config = DenseRetrieverConfig(
model_name_or_path=embedding_model_path,
dim=1024,
index_path='indexs/dense_cache'
)
config_info = dense_config.log_config()
print(config_info)
# Hybrid Retriever configuration
# Since the score frameworks are not on the same dimension, it is recommended to merge them
hybrid_config = HybridRetrieverConfig(
bm25_config=bm25_config,
dense_config=dense_config,
bm25_weight=0.7, # BM25 retrieval result weight
dense_weight=0.3 # Dense retrieval result weight
)
hybrid_retriever = HybridRetriever(config=hybrid_config)
Building the Index:
# Build the index
hybrid_retriever.build_from_texts(corpus)
# Save the index
hybrid_retriever.save_index()
If the index is already built, you can skip the above steps and directly load the index:
hybrid_retriever.load_index()
Retrieval Test:
query = "Alipay"
results = hybrid_retriever.retrieve(query, top_k=10)
print(len(results))
# Output results
for result in results:
print(f"Text: {result['text']}, Score: {result['score']}")
reranker_config = BgeRerankerConfig(
model_name_or_path=reranker_model_path
)
bge_reranker = BgeReranker(reranker_config)
glm4_chat = GLM4Chat(llm_model_path)
# ====================Retrieval Question-Answering=========================
test = pd.read_csv(test_path)
answers = []
for question in tqdm(test['question'], total=len(test)):
search_docs = hybrid_retriever.retrieve(question, top_k=10)
search_docs = bge_reranker.rerank(
query=question,
documents=[doc['text'] for idx, doc in enumerate(search_docs)]
)
# print(search_docs)
content = '\n'.join([f'Information[{idx}]:' + doc['text'] for idx, doc in enumerate(search_docs)])
answer = glm4_chat.chat(prompt=question, content=content)
answers.append(answer[0])
print(question)
print(answer[0])
print("************************************/n")
test['answer'] = answers
test[['answer']].to_csv(f'{PROJECT_BASE}/output/gomate_baseline.csv', index=False)
Building a custom RAG application
import os
from trustrag.modules.document.common_parser import CommonParser
from trustrag.modules.generator.llm import GLMChat
from trustrag.modules.reranker.bge_reranker import BgeReranker
from trustrag.modules.retrieval.dense_retriever import DenseRetriever
class RagApplication():
def __init__(self, config):
pass
def init_vector_store(self):
pass
def load_vector_store(self):
pass
def add_document(self, file_path):
pass
def chat(self, question: str = '', topk: int = 5):
pass
The module can be found at rag.py
You can configure the local model path
# Modify to your own configuration!!!
app_config = ApplicationConfig()
app_config.docs_path = "./docs/"
app_config.llm_model_path = "/data/users/searchgpt/pretrained_models/chatglm3-6b/"
retriever_config = DenseRetrieverConfig(
model_name_or_path="/data/users/searchgpt/pretrained_models/bge-large-zh-v1.5",
dim=1024,
index_dir='/data/users/searchgpt/yq/TrustRAG/examples/retrievers/dense_cache'
)
rerank_config = BgeRerankerConfig(
model_name_or_path="/data/users/searchgpt/pretrained_models/bge-reranker-large"
)
app_config.retriever_config = retriever_config
app_config.rerank_config = rerank_config
application = RagApplication(app_config)
application.init_vector_store()
python app.py
Access via browser: 127.0.0.1:7860
This project is completed by the GoMate
team from the Key Laboratory of Network Data Science and Technology, under the guidance of researchers Jiafeng Guo and Yixing Fan.
Welcome to provide suggestions and report bad cases. Join the group for timely communication, and PRs are also welcome.
If the group is full or for cooperation and exchange, please contact:
This project thanks the following open-source projects for their support and contributions:
- Document parsing: infiniflow/ragflow
- PDF file parsing: opendatalab/MinerU