This document provides a brief introduction to the implementation of the Intelligent Power Grid use case testbed. Our goal is to install the demo within two FLUIDOS nodes v0.1.0-rc.1, each of which is running a single Kubernetes node on a virtual machine with 16GB of RAM, 8 vCPU and a fresh volume of Ubuntu 20.04 LTS. This guide is inspired by the documentation provided in the Node repository.
As software requirements, after updating and upgrading all the packages, we have to install Helm, Kubectl, Liqoctl and Longhorn. The first three are FLUIDOS requirements from the testbed while Longhorn is required by our application for internal-cluster data replication. Docker and KinD are not needed in this setup. The following steps must be performed on both virtual machines.
From the Helm documentation:
apt-get install apt-transport-https
curl https://baltocdn.com/helm/signing.asc | gpg --dearmor | sudo tee /usr/share/keyrings/helm.gpg > /dev/null
echo "deb [arch=$(dpkg --print-architecture) signed-by=/usr/share/keyrings/helm.gpg] https://baltocdn.com/helm/stable/debian/ all main" | sudo tee /etc/apt/sources.list.d/helm-stable-debian.list
apt-get update
apt-get install helm
We install K3s distribution of Kubernetes, which features a very limited resource consumption, performance close to vanilla Kubernetes and a very simple setup procedure. This will allow the testbed to be replicated also onto edge devices like, Raspberry Pis. On the consumer cluster, we install K3s with the options
curl -sfL https://get.k3s.io | K3S_NODE_NAME=fluidos-consumer INSTALL_K3S_VERSION=v1.24.17+k3s1 sh -s - server --cluster-init --kube-apiserver-arg="default-not-ready-toleration-seconds=20" --kube-apiserver-arg="default-unreachable-toleration-seconds=20" --write-kubeconfig-mode 644 --cluster-cidr="10.48.0.0/16" --service-cidr="10.50.0.0/16"
while on the provider cluster we run
curl -sfL https://get.k3s.io | K3S_NODE_NAME=fluidos-provider INSTALL_K3S_VERSION=v1.24.17+k3s1 sh -s - server --cluster-init --kube-apiserver-arg="default-not-ready-toleration-seconds=20" --kube-apiserver-arg="default-unreachable-toleration-seconds=20" --write-kubeconfig-mode 644 --cluster-cidr="10.58.0.0/16" --service-cidr="10.60.0.0/16"
From the Liqoctl documentation on Liqo's website, we run:
curl --fail -LS "https://github.com/liqotech/liqo/releases/download/v0.10.3/liqoctl-linux-amd64.tar.gz" | tar -xz
install -o root -g root -m 0755 liqoctl /usr/local/bin/liqoctl
rm liqoctl
From the Longhorn documentation, install Longhorn dependencies
apt install open-iscsi nfs-common
Expose the rancher/k3s configs in a place where Longhorn can read them
mkdir /root/.kube
cp /etc/rancher/k3s/k3s.yaml /root/.kube/config
Anf finally install Longhorn (this may take a few minutes)
kubectl create namespace longhorn-system
helm repo add longhorn https://charts.longhorn.io
helm repo update
helm install longhorn longhorn/longhorn \
--namespace longhorn-system \
--set defaultSettings.nodeDownPodDeletionPolicy="delete-both-statefulset-and-deployment-pod" \
--set defaultDataLocality="best-effort" \
--version 1.3.2
Then, apply the storageclass
kubectl apply -f deploy/storageclass-lh.yaml
First, clone the FLUIDOS Node repository, carefully selecting the right version
wget https://github.com/fluidos-project/node/archive/refs/tags/v0.1.0-rc.1.zip
unzip v0.1.0-rc.1.zip
rm v0.1.0-rc.1.zip
mv node-0.1.0-rc.1 node
The file setup.sh, stored in node/tools/scripts/setup.sh
, contains the instructions to install two worker nodes and one control plane with KinD. From it we extract the commands to setup a testbed with two K3s clusters, each one with a single node.
Name and labels must bepecified, thus on the consumer we run
kubectl label nodes fluidos-consumer node-role.fluidos.eu/resources=true node-role.fluidos.eu/worker=true
while on the provider cluster
kubectl label nodes fluidos-provider node-role.fluidos.eu/resources=true node-role.fluidos.eu/worker=true
To check that the label is set correctly
kubectl describe node fluidos-provider
Then, on both machines we run
export KUBECONFIG="/etc/rancher/k3s/k3s.yaml"
helm repo add fluidos https://fluidos-project.github.io/node/
helm repo update
Finally, on the consumer cluster
liqoctl install k3s --cluster-name fluidos-consumer \
--version v0.10.3 \
--set storage.realStorageClassName=longhorn \
--pod-cidr="10.48.0.0/16" \
--service-cidr="10.50.0.0/16"
helm install node fluidos/node -n fluidos \
--create-namespace -f node/quickstart/utils/consumer-values.yaml \
--set networkManager.configMaps.nodeIdentity.ip="192.168.30.83:30000" \
--set networkManager.configMaps.providers.local="192.168.30.154:30001" \
--version 0.1.0-rc.1 \
--wait
while on the provider cluster
liqoctl install k3s --cluster-name fluidos-provider \
--version v0.10.3 \
--set storage.realStorageClassName=longhorn \
--pod-cidr="10.58.0.0/16" \
--service-cidr="10.60.0.0/16"
helm install node fluidos/node -n fluidos \
--create-namespace -f node/quickstart/utils/provider-values.yaml \
--set networkManager.configMaps.nodeIdentity.ip="192.168.30.154:30001" \
--set networkManager.configMaps.providers.local="192.168.30.83:30000" \
--version 0.1.0-rc.1 \
--wait
To check the installation status
kubectl get pods -A
liqoctl status
kubectl get flavours.nodecore.fluidos.eu -n fluidos
Now, to leverage remote resources, on the consumer cluster run
kubectl apply -f node/deployments/node/samples/solver.yaml
kubectl get solver -n fluidos
One can modify the parameters in the solver to reserve more resources, in our case we set 4Gi of RAM and 4000m of CPU. This command also establishes the peering! To check it run one of the following
liqoctl status peer
kubectl get solver -n fluidos
In order to guarantee cross-cluster volumes replication and data persisentcy, we follow this guide to install the Percona Operator for MySQL based on Percona XtraDB Cluster. First, clone the repository
git clone -b v1.11.0 https://github.com/percona/percona-xtradb-cluster-operator
cd percona-xtradb-cluster-operator/
Install the operator
kubectl apply -f deploy/crd.yaml
kubectl create namespace lower
kubectl apply -f deploy/rbac.yaml -n lower
kubectl apply -f deploy/operator.yaml -n lower
And then offload the namespace (since the operator must run on the consumer cluster, we apply it before offloading the namespace, otherwise we should modify the operator.yaml file to add a nodeSelector rule)
liqoctl offload namespace lower --namespace-mapping-strategy EnforceSameName
Now one should modify the deploy/cr.yaml
setting the appropriate configurations. For convenience, we save a copy of the already configured file in this repository.
kubectl apply -f deploy/cr.yaml -n lower
Use the following command to retrieve the root password of the database (if using the default secret)
kubectl get secret cluster1-secrets -n lower --template='{{.data.root | base64decode}}{{"\n"}}'
Launch a mysql-client to verify that the previous configuration changes have been patched correctly, and in case set the corresponding variables
kubectl run mysql-client --image=mysql:latest -it --rm --restart=Never -- /bin/bash
mysql -h cluster1-haproxy.lower.svc.cluster.local -uroot -proot_password
SHOW VARIABLES LIKE 'auto_increment_increment';
SET GLOBAL auto_increment_increment=1;
Finally, we can apply the OpenPDC application with the command
kubectl apply -f deploy/openpdc-lower-level.yaml -n lower
To connect the OpenPDC Manager GUI with the orchestrated backend, obtain the NodePort of the database with the command
kubectl describe svc cluster1-haproxy-replicas -n lower
and use it to connect with the cluster enabling port-forwarding with a command like
ssh -L 3306:localhost:NodePort -L 8500:localhost:30085 -L 6165:localhost:30065 user@kubernetes-node
This project is licensed under the Apache License - version 2.0, see the LICENSE file for details.
This project includes some previous work done by Claudio Usai, Claudio Lorina and Riccardo Medina as part of their master thesis at Politecnico di Torino.