Skip to content
forked from avaapm/SGADA

Official implementation of "Self-training Guided Adversarial Domain Adaptation For Thermal Imagery". CVPR 2021 PBVS.

Notifications You must be signed in to change notification settings

fazilaltinel/SGADA

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

62 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Self-training Guided Adversarial Domain Adaptation For Thermal Imagery

If you make use of this code, please cite the following paper (and give us a star ✨):

@InProceedings{sgada2021,
    author    = {Akkaya, Ibrahim Batuhan and Altinel, Fazil and Halici, Ugur},
    title     = {Self-Training Guided Adversarial Domain Adaptation for Thermal Imagery},
    booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
    month     = {June},
    year      = {2021},
    pages     = {4322-4331}
}

arXiv OpenAccess WebPage

Overview

This repository contains official implementation of "Self-training Guided Adversarial Domain Adaptation For Thermal Imagery" paper (accepted to CVPR 2021 Perception Beyond the Visible Spectrum (PBVS) workshop).

Environment

  • Python 3.8.5
  • PyTorch 1.6.0

To install the environment using Conda:

$ conda env create -f requirements_conda.yml

This command creates a Conda environment named sgada. The environment includes all necessary packages for training of SGADA method. After installation of the environment, activate it using the command below:

$ conda activate sgada

Note

Before running the training code, make sure that DATASETDIR environment variable is set to your dataset directory.

$ export DATASETDIR="/path/to/dataset/dir"

Dataset Preparation

  • Download FLIR ADAS dataset: Link
  • Download MS-COCO dataset:
  • After you downloaded the datasets, extract them to DATASETDIR.
  • Crop annotated objects (for bicycle, car and person classes only) using the command below:
(sgada) $ python utils/prepare_dataset.py

After the preparation steps, your dataset folder should be in the following structure.

DATASETDIR
└── sgada_data
    ├── flir
    │   ├── train
    │   │   ├── bicycle
    │   │   ├── car
    │   │   └── person
    │   ├── val
    │   │   ├── bicycle
    │   │   ├── car
    │   │   └── person
    │   ├── test_wconf_wdomain_weights.txt
    │   └── validation_wconf_wdomain_weights.txt
    └── mscoco
        ├── train
        │   ├── bicycle
        │   ├── car
        │   └── person
        └── val
            ├── bicycle
            ├── car
            └── person

test_wconf_wdomain_weights.txt and validation_wconf_wdomain_weights.txt files can be found here. Place them under DATASETDIR/sgada_data/flir/. These files have the fields below.

filePath, classifierPrediction, classifierConfidence, discriminatorPrediction, discriminatorConfidence, sampleWeight

If you want to generate pseudo-labelling files by yourself, your pseudo-labelling files should follow the given order. In order to obtain confidences and predictions, you can follow the training scheme in ADDA.PyTorch-resnet.

Running

  1. [Optional] Follow the source only training scheme in ADDA.PyTorch-resnet and save the model file.
    • If you want to use this source only model file, skip to the Step 4.
  2. Download the model file trained on source only dataset. Link
  3. Extract the compressed file.
  4. To train SGADA, run the command below.
(sgada) $ python core/sgada_domain.py \
 --trained [PATH] \
 --lr [LR] --d_lr [D_LR] --batch_size [BS] \
 --lam [LAM] --thr [THR] --thr_domain [THR_DOMAIN] \
 --device cuda:[GPU_ID]
Parameter Name Type Definition
[PATH] str Path to the source only model file generated in Step 1 or downloaded in Step 2
[LR] float Learning rate
[D_LR] float Discriminator learning rate
[BS] int Batch size
[LAM] float Trade-off parameter
[THR] float Classifier threshold
[THR_DOMAIN] float Discriminator threshold
[GPU_ID] int GPU device ID

Example running command

(sgada) $ python core/sgada_domain.py \
 --trained /mnt/sgada_model_files/best_model.pt \
 --lr 1e-5 --d_lr 1e-3 --batch_size 32 \
 --lam 0.25 --thr 0.79 --thr_domain 0.87 \
 --device cuda:3

Acknowledgement

This repo is mostly based on:

About

Official implementation of "Self-training Guided Adversarial Domain Adaptation For Thermal Imagery". CVPR 2021 PBVS.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%