Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add coordination ruler #13337

Draft
wants to merge 13 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions spacy/pipeline/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
from .attributeruler import AttributeRuler
#from .coordinationruler import CoordinationSplitter
from .dep_parser import DependencyParser
from .edit_tree_lemmatizer import EditTreeLemmatizer
from .entity_linker import EntityLinker
Expand All @@ -21,6 +22,7 @@

__all__ = [
"AttributeRuler",
#"CoordinationSplitter",
"DependencyParser",
"EditTreeLemmatizer",
"EntityLinker",
Expand Down
187 changes: 187 additions & 0 deletions spacy/pipeline/coordinationruler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,187 @@
from typing import List, Callable, Optional, Union
from pydantic import BaseModel, validator
import re

from ..tokens import Doc
from ..language import Language
from ..vocab import Vocab
from .pipe import Pipe
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could you run isort on all files? (the test suite will fail otherwise)


########### DEFAULT COORDINATION SPLITTING RULES ##############

def split_noun_coordination(doc: Doc) -> Union[List[str], None]:
"""Identifies and splits phrases with multiple nouns, a modifier
and a conjunction.
Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

FYI @honnibal


Examples:
- "apples and oranges" -> None
- "green apples and oranges" -> ["green apples", "green oranges"]
- "green apples and rotten oranges" -> None
- "apples and juicy oranges" -> ["juicy apples", "juicy oranges"]
- "hot chicken wings and soup" -> ["hot chicken wings", "hot soup"]
- "spicy ice cream and chicken wings" -> ["spicy ice cream", "spicy chicken wings"]

Args:
doc (Doc): The input document.

Returns:
Union[List[str], None]: A list of the coordinated noun phrases,
or None if no coordinated noun phrases are found.
"""
def _split_doc(doc: Doc) -> bool:
noun_modified = False
has_conjunction = False

for token in doc:
if token.head.pos_ == 'NOUN': ## check to see that the phrase is a noun phrase
has_modifier = any(child.dep_ == 'amod' for child in token.head.children) #check to see if the noun has a modifier
if has_modifier:
noun_modified = True
# check if there is a conjunction linked directly to a noun
if token.dep_ == 'conj' and token.head.pos_ == 'NOUN':
has_conjunction = True

return True if noun_modified and has_conjunction else False

phrases = []
modified_nouns = set()
to_split = _split_doc(doc)

if to_split:
for token in doc:
if token.dep_ == "amod" and token.head.pos_ == "NOUN":
modifier = token.text
head_noun = token.head

if head_noun not in modified_nouns:
nouns_to_modify = [head_noun] + list(head_noun.conjuncts)

for noun in nouns_to_modify:
compound_parts = [child.text for child in noun.lefts if child.dep_ == "compound"]
complete_noun_phrase = " ".join(compound_parts + [noun.text])
phrases.append(f"{modifier} {complete_noun_phrase}")
modified_nouns.add(noun) # Mark this noun as modified

return phrases if phrases != [] else None
else:
return None


###############################################################

# class SplittingRule(BaseModel):
# function: Callable[[Doc], Union[List[str], None]]

# @validator("function")
# def check_return_type(cls, v):
# nlp = en_core_web_sm.load()
# dummy_doc = nlp("This is a dummy sentence.")
# result = v(dummy_doc)
# if result is not None:
# if not isinstance(result, List):
# raise ValueError(
# "The custom splitting rule must return None or a list."
# )
# elif not all(isinstance(item, str) for item in result):
# raise ValueError(
# "The custom splitting rule must return None or a list of strings."
# )
# return v


# @Language.factory(
# "coordination_splitter", requires=["token.dep", "token.tag", "token.pos"]
# )
# def make_coordination_splitter(nlp: Language, name: str):
# """Make a CoordinationSplitter component.

# the default splitting rules include:

# - _split_duplicate_object: Split a text with 2 verbs and 1 object (and optionally a subject) into two texts each with 1 verb, the shared object (and its modifiers), and the subject if present.
# - _split_duplicate_verb: Split a text with 1 verb and 2 objects into two texts each with 1 verb and 1 object.
# - _split_skill_mentions: Split a text with 2 skills into 2 texts with 1 skill (the phrase must end with 'skills' and the skills must be separated by 'and')


# Args:
# nlp (Language): The spaCy Language object.
# name (str): The name of the component.

# RETURNS The CoordinationSplitter component.

# DOCS: xxx
# """

# return CoordinationSplitter(nlp.vocab, name=name)


# class CoordinationSplitter(Pipe):
# def __init__(
# self,
# vocab: Vocab,
# name: str = "coordination_splitter",
# rules: Optional[List[SplittingRule]] = None,
# ) -> None:
# self.name = name
# self.vocab = vocab
# if rules is None:
# default_rules = [
# _split_duplicate_object,
# _split_duplicate_verb,
# _split_skill_mentions,
# ]
# self.rules = [SplittingRule(function=rule) for rule in default_rules]
# else:
# # Ensure provided rules are wrapped in SplittingRule instances
# self.rules = [
# rule
# if isinstance(rule, SplittingRule)
# else SplittingRule(function=rule)
# for rule in rules
# ]

# def clear_rules(self) -> None:
# """Clear the default splitting rules."""
# self.rules = []

# def add_default_rules(self) -> List[SplittingRule]:
# """Reset the default splitting rules."""
# default_rules = [
# _split_duplicate_object,
# _split_duplicate_verb,
# _split_skill_mentions,
# ]
# self.rules = [SplittingRule(function=rule) for rule in default_rules]

# def add_rule(self, rule: Callable[[Doc], Union[List[str], None]]) -> None:
# """Add a single splitting rule to the default rules."""
# validated_rule = SplittingRule(function=rule)
# self.rules.append(validated_rule)

# def add_rules(self, rules: List[Callable[[Doc], Union[List[str], None]]]) -> None:
# """Add a list of splitting rules to the default rules.

# Args:
# rules (List[Callable[[Doc], Union[List[str], None]]]): A list of functions to be added as splitting rules.
# """
# for rule in rules:
# # Wrap each rule in a SplittingRule instance to ensure it's validated
# validated_rule = SplittingRule(function=rule)
# self.rules.append(validated_rule)

# def __call__(self, doc: Doc) -> Doc:
# """Apply the splitting rules to the doc.

# Args:
# doc (Doc): The spaCy Doc object.

# Returns:
# Doc: The modified spaCy Doc object.
# """
# if doc.lang_ != "en":
# return doc

# for rule in self.rules:
# split = rule.function(doc)
# if split:
# return Doc(doc.vocab, words=split)
# return doc
166 changes: 166 additions & 0 deletions spacy/tests/pipeline/test_coordinationruler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,166 @@
import pytest
from typing import List

from spacy.tokens import Doc
import spacy

from spacy.pipeline.coordinationruler import split_noun_coordination

@pytest.fixture
def nlp():
return spacy.blank("en")

### NOUN CONSTRUCTION CASES ###
@pytest.fixture
def noun_construction_case1(nlp):
words = ["apples", "and", "oranges"]
spaces = [True, True, False] # Indicates whether the word is followed by a space
pos_tags = ["NOUN", "CCONJ", "NOUN"]
dep_relations = ["nsubj", "cc", "conj"]

doc = Doc(nlp.vocab, words=words, spaces=spaces)

#set pos_ and dep_ attributes
for token, pos, dep in zip(doc, pos_tags, dep_relations):
token.pos_ = pos
token.dep_ = dep

# # define head relationships manually
doc[1].head = doc[2] # "and" -> "oranges"
doc[2].head = doc[0] # "oranges" -> "apples"
doc[0].head = doc[0]

return doc

@pytest.fixture
def noun_construction_case2(nlp):
words = ["red", "apples", "and", "oranges"]
spaces = [True, True, True, False] # Indicates whether the word is followed by a space
pos_tags = ["ADJ", "NOUN", "CCONJ", "NOUN"]
dep_relations = ["amod", "nsubj", "cc", "conj"]

# Create a Doc object manually
doc = Doc(nlp.vocab, words=words, spaces=spaces)

#set pos_ and dep_ attributes
for token, pos, dep in zip(doc, pos_tags, dep_relations):
token.pos_ = pos
token.dep_ = dep

# define head relationships manually
doc[0].head = doc[1]
doc[2].head = doc[3]
doc[3].head = doc[1]

return doc

@pytest.fixture
def noun_construction_case3(nlp):
words = ["apples", "and", "juicy", "oranges"]
spaces = [True, True, True, False] # Indicates whether the word is followed by a space.
pos_tags = ["NOUN", "CCONJ", "ADJ", "NOUN"]
dep_relations = ["nsubj", "cc", "amod", "conj"]

#create a Doc object manually
doc = Doc(nlp.vocab, words=words, spaces=spaces)

#set POS and dependency tags
for token, pos, dep in zip(doc, pos_tags, dep_relations):
token.pos_ = pos
token.dep_ = dep

#defining head relationships manually
doc[0].head = doc[0] # "apples" as root, pointing to itself for simplicity.
doc[1].head = doc[3] # "and" -> "oranges"
doc[2].head = doc[3] # "juicy" -> "oranges"
doc[3].head = doc[0] # "oranges" -> "apples", indicating a conjunctive relationship

return doc

@pytest.fixture
def noun_construction_case4(nlp):
words = ["hot", "chicken", "wings", "and", "soup"]
spaces = [True, True, True, True, False] # Indicates whether the word is followed by a space.
pos_tags= ["ADJ", "NOUN", "NOUN", "CCONJ", "NOUN"]
dep_relations = ["amod", "compound", "ROOT", "cc", "conj"]

doc = Doc(nlp.vocab, words=words, spaces=spaces)

for token, pos, dep in zip(doc, pos_tags, dep_relations):
token.pos_ = pos
token.dep_ = dep

# Define head relationships manually for "hot chicken wings and soup".
doc[0].head = doc[2] # "hot" -> "wings"
doc[1].head = doc[2] # "chicken" -> "wings"
doc[2].head = doc[2] # "wings" as root
doc[3].head = doc[4] # "and" -> "soup"
doc[4].head = doc[2] # "soup" -> "wings"

return doc

@pytest.fixture
def noun_construction_case5(nlp):
words = ["green", "apples", "and", "rotten", "oranges"]
spaces = [True, True, True, True, False] # Indicates whether the word is followed by a space.
pos_tags = ["ADJ", "NOUN", "CCONJ", "ADJ", "NOUN"]
dep_relations = ["amod", "ROOT", "cc", "amod", "conj"]

doc = Doc(nlp.vocab, words=words, spaces=spaces)

# Set POS and dependency tags.
for token, pos, dep in zip(doc, pos_tags, dep_relations):
token.pos_ = pos
token.dep_ = dep

# Define head relationships manually for "green apples and rotten oranges".
doc[0].head = doc[1] # "green" -> "apples"
doc[1].head = doc[1] # "apples" as root
doc[2].head = doc[4] # "and" -> "oranges"
doc[3].head = doc[4] # "rotten" -> "oranges"
doc[4].head = doc[1] # "oranges" -> "apples"

return doc

#test split_noun_coordination on 5 different cases
def test_split_noun_coordination(noun_construction_case1,
noun_construction_case2,
noun_construction_case3,
noun_construction_case4,
noun_construction_case5):

#test 1: no modifier - it should return None from _split_doc
case1_split = split_noun_coordination(noun_construction_case1)

assert case1_split == None

#test 2: modifier is at the beginning of the noun phrase
case2_split = split_noun_coordination(noun_construction_case2)

assert len(case2_split) == 2
assert isinstance(case2_split, list)
assert all(isinstance(phrase, str) for phrase in case2_split)
assert case2_split == ["red apples", "red oranges"]


#test 3: modifier is at the end of the noun phrase
case3_split = split_noun_coordination(noun_construction_case3)

assert len(case3_split) == 2
assert isinstance(case3_split, list)
assert all(isinstance(phrase, str) for phrase in case3_split)
assert case3_split == ["juicy oranges", "juicy apples"]

#test 4: deal with compound nouns
case4_split = split_noun_coordination(noun_construction_case4)

assert len(case4_split) == 2
assert isinstance(case4_split, list)
assert all(isinstance(phrase, str) for phrase in case4_split)
assert case4_split == ["hot chicken wings", "hot soup"]


#test 5: multiple modifiers
case5_split = split_noun_coordination(noun_construction_case5)

pass #this should return none i think
Loading