Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

add coordination ruler #13337

Draft
wants to merge 13 commits into
base: master
Choose a base branch
from
Draft
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 2 additions & 0 deletions spacy/pipeline/__init__.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
from .attributeruler import AttributeRuler
from .coordinationruler import CoordinationSplitter
from .dep_parser import DependencyParser
from .edit_tree_lemmatizer import EditTreeLemmatizer
from .entity_linker import EntityLinker
Expand All @@ -21,6 +22,7 @@

__all__ = [
"AttributeRuler",
"CoordinationSplitter",
"DependencyParser",
"EditTreeLemmatizer",
"EntityLinker",
Expand Down
321 changes: 321 additions & 0 deletions spacy/pipeline/coordinationruler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,321 @@
from typing import List, Callable, Optional, Union
from pydantic import BaseModel, validator
import re
import en_core_web_sm
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We'll want to find another solution for this, because we don't want to enforce all users to have exactly this model in their environment


from ..tokens import Doc
from ..language import Language
from ..vocab import Vocab
from .pipe import Pipe
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Could you run isort on all files? (the test suite will fail otherwise)


########### DEFAULT COORDINATION SPLITTING RULES ##############


def _split_duplicate_object(doc: Doc) -> Union[List[str], None]:
"""Split a text with 2 verbs and 1 object (and optionally a subject) into
2 texts each with 1 verb, the shared object (and its modifiers), and the subject if present.

i.e. 'I use and provide clinical supervision' -->
['I use clinical supervision', 'I provide clinical supervision']

Args:
doc (Doc): The spaCy Doc object.

Returns:
List[str]: The split texts.
"""
sentences = []

for token in doc:
if token.pos_ == "VERB" and (token.dep_ == "ROOT" or token.dep_ == "conj"):

has_AND = False
has_second_verb = False
has_dobj = False
subject = None

# Find the subject if it exists
for possible_subject in token.head.children:
if possible_subject.dep_ in ["nsubj", "nsubjpass"]:
subject = possible_subject
break

for child in token.children:

if child.pos_ == "CCONJ" and child.lemma_ == "and":
has_AND = True

if child.pos_ == "VERB" and child.dep_ == "conj":
has_second_verb = True
second_verb = child
first_verb = token.head if token.dep_ == "conj" else token

for descendant in second_verb.subtree:
if descendant.dep_ == "dobj":
has_dobj = True
# Collect the full noun phrase for the direct object
dobj_span = doc[
descendant.left_edge.i : descendant.right_edge.i + 1
]
dobj = dobj_span.text

if has_AND and has_second_verb and has_dobj:
subject_text = subject.text + " " if subject else ""
first_text = "{}{} {}".format(subject_text, first_verb, dobj)
second_text = "{}{} {}".format(subject_text, second_verb, dobj)

sentences.extend([first_text, second_text])

return sentences if sentences else None


def _split_on_and(text: str) -> List[str]:
"""Split a text on 'and' and return a list of the split texts.

Args:
text (str): The text to split.

Returns:
List[str]: The split texts.
"""
text = re.sub(r"\s\s+", " ", text)

replacements = {
";": ",",
", and ,": " and ",
", and,": " and ",
",and ,": " and ",
", and ": " and ",
" and ,": " and ",
",and,": " and ",
" and,": " and ",
",and ": " and ",
}
for old, new in replacements.items():
text = text.replace(old, new)

return [t.strip() for t in re.split(r",| and ", text)]


def _split_duplicate_verb(doc: Doc) -> Union[List[str], None]:
"""Split a text with 1 verb and 2 objects.

i.e. 'I love using smartphones and apps' -->
['I love using smartphones', 'I love using apps']

Args:
doc (Doc): The spaCy Doc object.

Returns:
List[str]: The split texts.
"""

for token in doc:

if token.pos_ == "VERB" and token.dep_ == "ROOT":

has_AND = False
has_dobj = False
has_sec_obj = False
subject = ""

for child in token.children:

if child.dep_ == "dobj":
has_dobj = True

subject = child.text if child.dep_ == "nsubj" else subject

objects = " ".join(
[
c.text
for c in token.subtree
if c.text != token.text and c.dep_ != "nsubj"
]
)

split_objects = _split_on_and(objects)

object_list = []
for split in split_objects:
object_list.append(split)

for subchild in child.children:

if subchild.pos_ == "CCONJ" and subchild.lemma_ == "and":
has_AND = True

if subchild.dep_ == "conj":
has_sec_obj = True

if has_AND and has_dobj and has_sec_obj:
text_list = [
f"{subject} {token.text} {split}.".strip()
for split in object_list
]
return [text.replace(" ..", ".") for text in text_list]

return None


def _split_skill_mentions(doc: Doc) -> Union[List[str], None]:
"""Split a text with 2 skills into 2 texts with 1 skill.

i.e. 'written and oral communication skills' -->
['written communication skills', 'oral communication skills']

Args:
text (str): The text to split.

Returns:
List[str]: The split texts.
"""
for token in doc:
if (
token.pos_ == "NOUN"
and token.lemma_ == "skill"
and token.idx == doc[-1].idx
):

has_AND = False

root = [token for token in doc if token.dep_ == "ROOT"]
if root:
root = root[0]

for child in root.subtree:

if child.pos_ == "CCONJ" and child.lemma_ == "and":
has_AND = True

if has_AND:
skill_def = " ".join(
[c.text for c in root.subtree if c.text != token.text]
)

split_skills = _split_on_and(skill_def)

skill_lists = []
for split_skill in split_skills:
skill_lists.append("{} {}".format(split_skill, token.text))

return skill_lists
return None


class SplittingRule(BaseModel):
function: Callable[[Doc], Union[List[str], None]]

@validator("function")
def check_return_type(cls, v):
nlp = en_core_web_sm.load()
dummy_doc = nlp("This is a dummy sentence.")
result = v(dummy_doc)
if result is not None:
if not isinstance(result, List):
raise ValueError(
"The custom splitting rule must return None or a list."
)
elif not all(isinstance(item, str) for item in result):
raise ValueError(
"The custom splitting rule must return None or a list of strings."
)
return v


@Language.factory(
"coordination_splitter", requires=["token.dep", "token.tag", "token.pos"]
)
def make_coordination_splitter(nlp: Language, name: str):
"""Make a CoordinationSplitter component.

the default splitting rules include:

- _split_duplicate_object: Split a text with 2 verbs and 1 object (and optionally a subject) into two texts each with 1 verb, the shared object (and its modifiers), and the subject if present.
- _split_duplicate_verb: Split a text with 1 verb and 2 objects into two texts each with 1 verb and 1 object.
- _split_skill_mentions: Split a text with 2 skills into 2 texts with 1 skill (the phrase must end with 'skills' and the skills must be separated by 'and')


Args:
nlp (Language): The spaCy Language object.
name (str): The name of the component.

RETURNS The CoordinationSplitter component.

DOCS: xxx
"""

return CoordinationSplitter(nlp.vocab, name=name)


class CoordinationSplitter(Pipe):
def __init__(
self,
vocab: Vocab,
name: str = "coordination_splitter",
rules: Optional[List[SplittingRule]] = None,
) -> None:
self.name = name
self.vocab = vocab
if rules is None:
default_rules = [
_split_duplicate_object,
_split_duplicate_verb,
_split_skill_mentions,
]
self.rules = [SplittingRule(function=rule) for rule in default_rules]
else:
# Ensure provided rules are wrapped in SplittingRule instances
self.rules = [
rule
if isinstance(rule, SplittingRule)
else SplittingRule(function=rule)
for rule in rules
]

def clear_rules(self) -> None:
"""Clear the default splitting rules."""
self.rules = []

def add_default_rules(self) -> List[SplittingRule]:
"""Reset the default splitting rules."""
default_rules = [
_split_duplicate_object,
_split_duplicate_verb,
_split_skill_mentions,
]
self.rules = [SplittingRule(function=rule) for rule in default_rules]

def add_rule(self, rule: Callable[[Doc], Union[List[str], None]]) -> None:
"""Add a single splitting rule to the default rules."""
validated_rule = SplittingRule(function=rule)
self.rules.append(validated_rule)

def add_rules(self, rules: List[Callable[[Doc], Union[List[str], None]]]) -> None:
"""Add a list of splitting rules to the default rules.

Args:
rules (List[Callable[[Doc], Union[List[str], None]]]): A list of functions to be added as splitting rules.
"""
for rule in rules:
# Wrap each rule in a SplittingRule instance to ensure it's validated
validated_rule = SplittingRule(function=rule)
self.rules.append(validated_rule)

def __call__(self, doc: Doc) -> Doc:
"""Apply the splitting rules to the doc.

Args:
doc (Doc): The spaCy Doc object.

Returns:
Doc: The modified spaCy Doc object.
"""
if doc.lang_ != "en":
return doc

for rule in self.rules:
split = rule.function(doc)
if split:
return Doc(doc.vocab, words=split)
return doc
Loading
Loading