This repo contains the code for the paper Rethinking Skill Extraction in the Job Market Domain using Large Language Models, published at the NLP4HR Workshop @ EACL2024. Don't hesitate to contact us if you have questions!
End-to-end experiments can be run with the following command
sh run.sh
Datasets used for experiments can be found here. Additionally, you can download the processed annotation model by running the following command
python main.py --knn --dataset_name $DATASET_NAME
Create an api_key.py
and put your OpenAI API key under the variable API_KEY
. Afterwards, you can run the experiments and evaluate the results using the following commands
python main.py --run --shots $NUM_SHOTS --knn --prompt_type $PROMPT_TYPE [--start_from_saved] [--exclude_empty] [--positive_only] --dataset_name $DATASET_NAME --model $MODEL
python main.py --eval --shots $NUM_SHOTS --knn --prompt_type $PROMPT_TYPE --dataset_name $DATASET_NAME --model $MODEL
@inproceedings{nguyen-etal-2024-rethinking,
title = "Rethinking Skill Extraction in the Job Market Domain using Large Language Models",
author = "Nguyen, Khanh and
Zhang, Mike and
Montariol, Syrielle and
Bosselut, Antoine",
booktitle = "Proceedings of the First Workshop on Natural Language Processing for Human Resources (NLP4HR 2024)",
month = mar,
year = "2024",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2024.nlp4hr-1.3",
}