Skip to content

enemy1205/STTN

 
 

Repository files navigation

STTN for Video Inpainting

teaser

Learning Joint Spatial-Temporal Transformations for Video Inpainting

Yanhong Zeng, Jianlong Fu, and Hongyang Chao.
In ECCV 2020.

Citation

If any part of our paper and repository is helpful to your work, please generously cite with:

@inproceedings{yan2020sttn,
  author = {Zeng, Yanhong and Fu, Jianlong and Chao, Hongyang,
  title = {Learning Joint Spatial-Temporal Transformations for Video Inpainting},
  booktitle = {The Proceedings of the European Conference on Computer Vision (ECCV)},
  year = {2020}
}

Introduction

High-quality video inpainting that completes missing regions in video frames is a promising yet challenging task.

In this paper, we propose to learn a joint Spatial-Temporal Transformer Network (STTN) for video inpainting. Specifically, we simultaneously fill missing regions in all input frames by the proposed multi-scale patch-based attention modules. STTN is optimized by a spatial-temporal adversarial loss.

To show the superiority of the proposed model, we conduct both quantitative and qualitative evaluations by using standard stationary masks and more realistic moving object masks.

STTN

Installation

Clone this repo.

git clone [email protected]:researchmm/STTN.git
cd STTN/

We build our project based on Pytorch and Python. For the full set of required Python packages, we suggest create a Conda environment from the provided YAML, e.g.

conda env create -f environment.yml 
conda activate sttn

Completing Videos Using Pretrained Model

The result videos can be generated using pretrained models. For your reference, we provide a model pretrained on Youtube-VOS(Google Drive Folder).

  1. Download the pretrained models from the Google Drive Folder, save it in checkpoints/.

  2. Complete videos using the pretrained model. For example,

python test.py --video examples/schoolgirls_orig.mp4 --mask examples/schoolgirls  --ckpt checkpoints/sttn.pth 

The outputs videos are saved at examples/.

Dataset Preparation

We provide dataset split in datasets/.

Preparing Youtube-VOS (2018) Dataset. The dataset can be downloaded from here. In particular, we follow the standard train/validation/test split (3,471/474/508). The dataset should be arranged in the same directory structure as

datasets
    |- youtube-vos
        |- JPEGImages
           |- <video_id>.zip
           |- <video_id>.zip
        |- test.json 
        |- train.json 

Preparing DAVIS (2018) Dataset. The dataset can be downloaded from here. In particular, there are 90 videos with densely-annotated object masks and 60 videos without annotations. The dataset should be arranged in the same directory structure as

datasets
    |- davis
        |- JPEGImages
          |- cows.zip
          |- goat.zip
        |- Annoatations
          |- cows.zip
          |- goat.zip
        |- test.json 
        |- train.json 

Training New Models

Once the dataset is ready, new models can be trained with the following commands. For example,

python train.py --config configs/youtube-vos.json --model sttn 

Testing

Testing is similar to Completing Videos Using Pretrained Model.

python test.py --video examples/schoolgirls_orig.mp4 --mask examples/schoolgirls  --ckpt checkpoints/sttn.pth 

The outputs videos are saved at examples/.

Visualization

We provide an example of visualization attention maps in visualization.ipynb.

Training Monitoring

We provide traning monitoring on losses by running:

tensorboard --logdir release_mode                                                    

Contact

If you have any questions or suggestions about this paper, feel free to contact me ([email protected]).

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 78.5%
  • Python 21.5%