Skip to content

educreations/activity-tracker

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

36 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Activity Tracker

A library to perform daily-active-user (and similar) tracking.

Installation

Install the package activity-tracker from PyPI using pip:

$ pip install -U activity-tracker

Basic Usage

import six

from activity_tracker.tracker import ActivityTracker

tracker = ActivityTracker(
    periods=[ActivityTracker.PERIOD_DAILY],
    backend='redis')

# Record activity for a couple users.
tracker.track(id=123)
tracker.track(id=123)
tracker.track(id=456)

# At the end of the time period (days in this example), collapse the raw
# data into counts.
tracker.collapse()

# After the data is collapsed, it can be queried. In this example, bucket
# is always None, since no bucket was provided to track (and collapse).
import datetime
today = datetime.date.today()
week_ago = today - datetime.timedelta(days=7)
for date, date_data in tracker.lookup_daily(start=week_ago, end=today):
    print date
    for bucket, count in six.iteritems(date_data):
        print '  {}: {}'.format(bucket, count)

Buckets

You can use multiple buckets for tracking different types of users, devices, etc.

tracker.track(id='random-session-1', bucket='anon')
tracker.track(id='random-session-2', bucket='anon')
tracker.track(id=456, bucket='auth')

tracker.collapse(buckets=['anon', 'auth'])

data = tracker.lookup_daily(
    start=week_ago, end=today,
    buckets=['anon', 'auth'])

Changing ids and/or buckets

You can also change a user's id and/or bucket, primarily to allow replacing an anonymous session id with an authenticated user's id.

tracker.track(id='random-session-1', bucket='anon')
tracker.track(id='random-session-2', bucket='anon')

# User logs in; replace ('anon', 'random-session-2') with ('auth', '123')
tracker.track(
    id=123, bucket='auth',
    old_id='random-session-2', old_bucket='anon')

Aggregate buckets

When collapsing data, you can also create aggregate buckets which contain the count of the union of 2 or more other buckets. This is useful for computing totals of sets of users that may overlap.

tracker.track(id='[email protected]', bucket='site1')
tracker.track(id='[email protected]', bucket='site1')
tracker.track(id='[email protected]', bucket='site2')
tracker.track(id='[email protected]', bucket='site2')

tracker.collapse(
    buckets=['site1', 'site2'],
    aggregate_buckets={'total': ['site1', 'site2']})

When looking up data for this day, there will be 3 buckets:

site1: 2
site2: 2
total: 3

License

Copyright © 2023, Educreations, Inc under the MIT LICENSE.

About

A library to perform daily-active-user (and similar) tracking

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 3

  •  
  •  
  •  

Languages