Skip to content
/ stars-h-1 Public
forked from ecrc/stars-h

Software for Testing Accuracy, Reliability and Scalability of Hierarchical computations.

License

Notifications You must be signed in to change notification settings

ecrc/stars-h-1

 
 

Repository files navigation

What is STARS-H?

The Software for Testing Accuracy, Reliability and Scalability of Hierarchical (STARS-H) computations is a parallel  library that provides a high performance matrix market of rank structured matrix operators. STARS-H supports various matrix kernels that are proxies for many scientific applications, and optionally compresses them by exploiting their data sparsity. This translates into a lower arithmetic complexity and memory footprint. STARS-H intends to provide a standard software environment for assessing accuracy and performance of 𝓗-matrix libraries on a given hardware architecture. STARS-H currently supports the tile low-rank (TLR) data format for approximation on shared and distributed-memory systems, possibly equipped with GPUs, using MPI, OpenMP and task-based programming models.

Vision of STARS-H

The vision of STARS-H is to design, implement and provide a community code for hierarchical matrix generator with support of various data formats for approximation, including, but limited to, TLR, HSS, HODLR, H and H^2. STARS-H aspires to be for the low-rank approximation community what UF Sparse Matrix Collection is for the sparse linear algebra community, by generating hierarchical matrices coming from a variety of synthetic and real-world applications. Furthermore, extracting the performance of the underlying hardware resources (i.e., x86 and GPUs) is in the DNA of STARS-H, since the approximation phase can be time-consuming on large-scale scientific applications.

Current Features of STARS-H

This project is WIP, with current features limited to:

The only supported data format is Tile Low-Rank (TLR):

  1. TLR Approximation
  2. Multiplication of TLR matrix by dense matrix

Programming models (backends):

  1. OpenMP
  2. MPI
  3. Task-based using StarPU (with and without MPI)

Applications in matrix-free form:

  1. Cauchy matrix
  2. Electrostatics (1/r)
  3. Electrodynamics (sin(kr)/r and cos(kr)/r)
  4. Random synthetic TLR matrix
  5. Spatial statistics (exponential, square exponential and matern kernels)
  6. Mesh deformation using radial basis functions, i.e., Gaussian, exponential, inverse quadratic, inverse multi-quadratic, CPTS, and Wendland kernels.
  7. Acoustic scattering

Low-rank approximation techniques (low-rank engines):

  1. Ordinary SVD,
  2. Rank-revealing QR,
  3. Randomized SVD.

Additional:

  1. CG method for symmetric positive-definite (SPD) systems.

TODO List

  1. Add support for more matrix kernels and applications
  2. Extend support to hardware accelerators (i.e, GPUs)
  3. Provide full StarPU support (GPUs and distributed-memory systems)
  4. Port to other dynamic runtime systems
  5. Implement additional low-rank routines like ACA.
  6. Implement additional formats: HODLR/H/HSS/H^2

Installation

Installation requires at least CMake of version 3.2.3. To build STARS-H, follow these instructions:

  1. Get STARS-H from git repository

    git clone [email protected]:ecrc/stars-h
    

    or

    git clone https://github.com/ecrc/stars-h
    
  2. Go into STARS-H folder

    cd stars-h
    
  3. Get submodules

    git submodule update --init
    
  4. Create build directory and go there

    mkdir build && cd build
    
  5. Use CMake to get all the dependencies

    cmake .. -DCMAKE_INSTALL_PREFIX=/path/to/install/
    
  6. Build STARS-H

    make -j
    
  7. Run tests (optional)

    make test
    
  8. Build local documentation (optional)

    make docs
    
  9. Install STARS-H

    make install
    
  10. Add line

    export PKG_CONFIG_PATH=/path/to/install/lib/pkgconfig:$PKG_CONFIG_PATH
    

    to your .bashrc file.

Now you can use pkg-config executable to collect compiler and linker flags for STARS-H.

Examples

The directory examples contains two subfolders: problem and approximation. The sources in problem show how to generate problems (e.g., spatial statistics, minimal or dense) and how to create STARSH_problem instance, required for every step of STARS-H. The examples in approximation are based on problem generations and have additional steps on approximation of corresponding matrices.

Important notice: the approximation phase does not require the entire dense matrix to be stored, since matrix elements are computed on the fly.

Dataset

Please see Data.md for information about dataset.

Handout

About

Software for Testing Accuracy, Reliability and Scalability of Hierarchical computations.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • C 78.3%
  • Fortran 11.1%
  • CMake 6.1%
  • C++ 2.0%
  • Objective-C 1.2%
  • Python 1.1%
  • Cuda 0.2%