Skip to content

dniku/free-lunch-saliency

Repository files navigation

Free-Lunch Saliency via Attention in Atari Agents

Code for https://arxiv.org/abs/1908.02511.

Trained models are available here. Directory structure is as follows:

<game>.<network>
└── <train_seed>
    ├── config.json
    ├── eval.pkl
    ├── events.out.tfevents.<timestamp>.<hostname>
    ├── model.pkl
    └── saliency.pkl  # only for cnn{,_daqn,_rsppo,_sparse_fls,_sparse_fls_pool,_dense_fls}

Environment

The recommended way to run our code is via Docker. We provide a container that you can download:

docker pull dniku/fl-saliency

or, alternatively, build it yourself:

cat Dockerfile | docker build -t fl-saliency -

The container is based off the official nvidia/cuda:9.0-cudnn7-devel-ubuntu16.04 image with additional Python 3.6 and a set of extra libraries, including a slightly patched version of OpenAI Baselines.

Training

Create output directory with your user:

mkdir /tmp/fl-saliency

Run training:

docker run \
    -v $(pwd):/home/docker/fl-saliency \
    -v /tmp/fl-saliency:/home/docker/out \
    --gpus all --user=$(id -u):$(id -g) --rm -it \
    dniku/fl-saliency \
    python3 fl-saliency/train_baselines.py \
        --output-dir /home/docker/out \
        --network <NETWORK> \
        --env-name <ENV_NAME> \
        --train-seed <TRAIN_SEED> \
        --num-timesteps <NUM_TIMESTEPS>

Parameters:

  • NETWORK can be one of the following
    cnn
    cnn_daqn
    cnn_rsppo
    cnn_rsppo_nopad
    cnn_sparse_fls
    cnn_sparse_fls_pool
    cnn_sparse_fls_norm
    cnn_sparse_fls_1x1
    cnn_sparse_fls_sp2
    cnn_sparse_fls_norelu
    cnn_sparse_fls_norelu_pool
    cnn_sparse_fls_h1
    cnn_sparse_fls_x3
    cnn_dense_fls
    cnn_dense_fls_norelu
    
  • ENV can be any environment supported by OpenAI Gym. We used the following ones:
    BeamRiderNoFrameskip-v4
    BreakoutNoFrameskip-v4
    MsPacmanNoFrameskip-v4
    SpaceInvadersNoFrameskip-v4
    EnduroNoFrameskip-v4
    SeaquestNoFrameskip-v4
    
  • TRAIN_SEED can be any integer. We used 1, 9, 17, 25, 33.
  • NUM_TIMESTEPS can be any integer ≥ 1024. We used 50000000. Use 1024 for testing.

Output will be saved in the directory specified by --output-dir in the following format:

logs
├── 0.N.monitor.csv  # logs for each of the 8 training environments
├── log.txt          # plain-text log with metrics (also printed to stdout)
└── progress.csv     # CSV log with metrics
tb
└── events.out.tfevents.<timestamp>.<hostname>  # Tensorboard log
model.pkl            # trained model in Baselines format

Performance evaluation

Assuming that you downloaded the models to ~/data/fl-saliency:

docker run \
    -v $(pwd):/home/docker/fl-saliency \
    -v ~/data/fl-saliency/Breakout.cnn_sparse_fls/01/:/home/docker/experiment:ro \
    -v /tmp/fl-saliency:/home/docker/out \
    --gpus all --user=$(id -u):$(id -g) --rm -it \
    dniku/fl-saliency \
    python3 fl-saliency/run_baselines.py \
        --experiment-dir experiment \
        --output-dir out \
        --num-env <NUM_ENV> \
        --evals-per-env <EVALS_PER_ENV> \
        --max-eplen <MAX_EPLEN> \
        --progress

Parameters:

  • NUM_ENV: how many environments to spawn in parallel. We used 16. Use 1 or 2 for testing.
  • EVALS_PER_ENV: how many times to evaluate in each environment. We used 512. Use 1 for testing.
  • MAX_EPLEN: limit episode length to this many steps. Default is 108000 which corresponds to 30 minutes at 60 FPS. This is the recommended default for all games except Breakout, where models tend to enter a cycle. For Breakout, we recommend using 30000. For testing, use 1000.
  • --raw-obs: save a video called perception.mkv with raw observations and an attention overlay.
  • --processed-obs: save a video called perception.mkv with preprocessed observations and an attention overlay.

If you pass both --raw-obs and --processed-obs, raw and preprocessed observations will be stacked vertically.

Evaluation results are saved in results.json. Example:

{
    "rewards": [
        864.0
    ],
    "lengths": [
        6849.0
    ],
    "elapsed_time": [
        25.020986557006836
    ],
    "done_per_env": [
        1
    ]
}

rewards, lengths, and elapsed_time come from Baselines. Each entry corresponds to a finished episode. lengths contains the number of steps while elapsed_time is the time since the environment was spawned, in seconds. done_per_env has an entry for each environment and counts how many episodes were finished there by the time evaluation is over.

Saliency evaluation

First, download the Atari-HEAD dataset:

pip install --user zenodo-get
mkdir -p ~/data/atari_head/
cd ~/data/atari_head/
zenodo_get.py 2603190

Then:

docker run \
    -v $(pwd):/home/docker/fl-saliency \
    -v ~/data/fl-saliency/Breakout.cnn_sparse_fls/01:/home/docker/experiment \
    -v /tmp/fl-saliency:/home/docker/out \
    -v ~/data/atari_head:/home/docker/atari_head \
    --gpus all --user=$(id -u):$(id -g) --rm -it \
    dniku/fl-saliency \
    sh -c '\
    pip3 install --user -e fl-saliency/streaming-image-env && \
    python3 fl-saliency/benchmark_atari_head.py \
        --experiment-dir experiment \
        --atari-head-dir atari_head \
        --output-dir out \
        --progress'

About

Code for "Free-Lunch Saliency via Attention in Atari Agents"

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published