Skip to content

Commit

Permalink
Edit notes while doing DCT gamma function question
Browse files Browse the repository at this point in the history
  • Loading branch information
dandavison committed Dec 13, 2020
1 parent ca81e41 commit ef38983
Show file tree
Hide file tree
Showing 4 changed files with 32 additions and 5 deletions.
2 changes: 2 additions & 0 deletions analysis--berkeley-202a.tex
Original file line number Diff line number Diff line change
Expand Up @@ -925,6 +925,8 @@ \subsection{For a sequence of sets}

We have $\liminfn A_n \subseteq \limsupn A_n$.

\url{https://math.stackexchange.com/a/476171/397805}


\section*{Expressions involving countable unions and intersections}

Expand Down
17 changes: 15 additions & 2 deletions analysis--real-analysis-sequences-series.tex
Original file line number Diff line number Diff line change
Expand Up @@ -276,11 +276,24 @@ \subsubsection{Maclaurin series derivation}

and in general $c_n = \frac{f^{(n)}(0)}{n!}$.

For example, take $f(x) = e^x$. The derivatives are all the same of course: $f^{(n)}(x) = e^x$. And $e^0 = 1$, so
For example, take $f(x) = e^x$. The derivatives are all the same of course: $f^{(n)}(x) = e^x$. And $e^0 = 1$, so the Maclaurin expansion of $e^{x}$ is
\begin{align*}
e^x = e^{0} + \frac{xe^0}{1!} + \frac{x^2e^0}{2!} + \cdots = \sum_{n=0}^\infty \frac{x^n}{n!}
\end{align*}
The Maclaurin expansion of $e^{-x}$ is
\begin{align*}
e^{-x} = e^{0} - \frac{xe^0}{1!} + \frac{x^2e^0}{2!} - \cdots = \sum_{n=0}^\infty (-1)^{n}\frac{x^n}{n!}.
\end{align*}

\begin{align*}
e^x = 1 + \frac{x}{1} + \frac{x^2}{2!} + \frac{x^3}{3!} + ... = \sum_{i=0}^\infty \frac{x^i}{i!}
\lim_{n \to \infty} \(1 + \frac{x}{n}\)^n
&= \lim_{n \to \infty} \sum_{k=0}^n {n \choose k} \(\frac{x}{n}\)^k \\
&= \lim_{n \to \infty} \sum_{k=0}^n \frac{n!}{(n-k)!k!} \(\frac{x}{n}\)^k \\
\end{align*}
... \red{TODO} prove this is $e^x$.




\section{Exercises}

Expand Down
4 changes: 2 additions & 2 deletions calculus.tex
Original file line number Diff line number Diff line change
Expand Up @@ -221,9 +221,9 @@ \subsection{Integration by parts}


\begin{theorem}
Let $f:U \to U$ and $g:U \to U$. Then
Let $f:X \to X$ and $g:X \to X$. Then
\begin{align*}
\int fg' \du = fg - \int gf' \du.
\int fg' \dx = fg - \int gf' \dx.
\end{align*}
\end{theorem}

Expand Down
14 changes: 13 additions & 1 deletion foundations.tex
Original file line number Diff line number Diff line change
Expand Up @@ -79,7 +79,7 @@ \section{Permutations and combinations}
\begin{theorem*}
The number of $k$-tuples that can be formed from $\{1, 2, \ldots, n\}$ is
\begin{align*}
P(n, k) = n_{(k)} = n(n-1)(n-2)\cdots(n-k+1).
P(n, k) = n_{(k)} = n(n-1)(n-2)\cdots(n-k+1) = \frac{n!}{(n - k)!}.
\end{align*}
The number of sets of size $k$ that can be formed from $\{1, 2, \ldots, n\}$ is
\begin{align*}
Expand All @@ -92,6 +92,18 @@ \section{Binomial theorem}
(a + b)^n = \sum_{k=0}^n{n \choose k}a^{n-k}b^k
\end{align*}

\section{Taylor expansions}

Suppose that any function of a real number $f(x)$ can be represented by a "power series" with certain coefficients $c_i$
\begin{align*}
f(x) = c_0 + c_1x^1 + c_2x^2 + c_3x^3 + c_4x^4 + ...
\end{align*}
Examining successive derivatives shows that $c_n = \frac{f^{(n)}(0)}{n!}$ (\red{TODO} explain why evaluating at zero).
For example, the Maclaurin expansion of $e^{x}$ is
\begin{align*}
e^x = e^{0} + \frac{xe^0}{1!} + \frac{x^2e^0}{2!} + \cdots = \sum_{n=0}^\infty \frac{x^n}{n!}
\end{align*}

\section{Triangle inequalities}

\begin{theorem*}
Expand Down

0 comments on commit ef38983

Please sign in to comment.