-
Notifications
You must be signed in to change notification settings - Fork 2
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
c459ef3
commit 5e627fb
Showing
3 changed files
with
192 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,31 @@ | ||
\section{Integers and Equivalence relations} | ||
|
||
\subsubsection{Positive integers less than n and relatively prime} | ||
|
||
5 => 1, 2, 3, 4 | ||
8 => 1, 3, 5, 7 | ||
12 => 1, 5, 7, 11 | ||
20 => 1, 3, 7, 9, 11, 13, 17, 19 | ||
25 => 1, 2, 3, 4, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 21, 22, 23, 24 | ||
$\checkmark$ | ||
|
||
\subsubsection{gcd, lcm} | ||
|
||
Let $p$ and $q$ be distinct primes. | ||
\begin{align*} | ||
&\gcd(2, 10) = \gcd(2, 2 \cdot 5) = 2 | ||
&\lcm(2, 10) = \lcm(2, 2 \cdot 5) = 20\\ | ||
&\gcd(20, 8) = \gcd(2^2 \cdot 5, 2^3) = 2^2 | ||
&\lcm(20, 8) = \lcm(2^2 \cdot 5, 2^3) = 2^3 \cdot 5 = 40\\ | ||
&\gcd(12, 40) = \gcd(2^2 \cdot 3, 2^3 \cdot 5) = 2^2 = 4 | ||
&\lcm(12, 40) = \lcm(2^2 \cdot 3, 2^3 \cdot 5) = 2^3 \cdot 3 \cdot 5 = 120\\ | ||
&\gcd(p^2q^2, pq^3) = pq^2 | ||
&\lcm(p^2q^2, pq^3) = p^2q^3 | ||
\end{align*} | ||
$\checkmark$ | ||
|
||
\subsubsection{modular arithmetic} | ||
\begin{align*} | ||
(47 + 68) \mod 11 = 5 | ||
\end{align*} | ||
$\checkmark$ |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
\section{A few preliminary remarks} | ||
\section{Set theory} | ||
\begin{enumerate} | ||
\item[12.] | ||
\begin{claim*} | ||
$(A \isect B)' = A' \union B'$ | ||
\end{claim*} | ||
\end{enumerate} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,153 @@ | ||
https://mcs-notes2.open.ac.uk/files/m337dq.pdf | ||
|
||
\includegraphics[width=400pt]{img/ou-entry-2236.png} | ||
|
||
\begin{enumerate} | ||
\item | ||
\begin{align*} | ||
3(2ac + 2bc + 4) - 6(ab + ac + 2) | ||
&= 6ac + 6bc + 12 - 6ab -6ac -12 \\ | ||
&= 6bc - 6ac \\ | ||
&= 6c(b-a) | ||
\end{align*} | ||
\item (b) | ||
\item | ||
\begin{align*} | ||
\frac{1}{\sqrt{2} + 1} | ||
&= \frac{\sqrt{2} - 1}{(\sqrt{2} + 1)(\sqrt{2} - 1)} \\ | ||
&= \sqrt{2} - 1 | ||
\end{align*} | ||
\item (b) | ||
\item | ||
\begin{align*} | ||
x(x^2 - 5x + 6) = x(x-2)(x-3) | ||
\end{align*} | ||
\item \begin{align*} | ||
y &= x(x - 3) \\ | ||
&= x^2 - 3x | ||
\end{align*} | ||
Second derivative is positive. | ||
$y > 0$ for $x \in (-\infty, 0) \cup (3, \infty)$. | ||
\item \begin{align*} | ||
\frac{1}{x(x - 3)} &= \frac{A}{x} + \frac{B}{x-3} \\ | ||
1 &= Ax - 3A + Bx \\ | ||
A &= -1/3 \\ | ||
B &= 1/3 \\ | ||
\frac{1}{x(x - 3)} &= \frac{-1}{3x} + \frac{1}{3(x - 3)} | ||
\end{align*} | ||
Check: | ||
\begin{align*} | ||
\frac{-1}{3x} + \frac{1}{3(x - 3)} | ||
&= \frac{-3(x - 3) + 3x}{9x(x - 3)} \\ | ||
&= \frac{9}{9x(x - 3)} \checkmark | ||
\end{align*} | ||
|
||
|
||
|
||
\includegraphics[width=400pt]{img/ou-entry-9439.png} | ||
|
||
\begin{enumerate} | ||
\item | ||
\begin{table}[h!] | ||
\centering | ||
\begin{tabular}{c|ccccccccc} | ||
$\theta$ & 0 & $\pi/6$ & $\pi/4$ & $\pi/3$ & $\pi/2$ & $2\pi/3$ & $3\pi/4$ & $5\pi/6$ & $\pi$ \\ | ||
\hline | ||
$\sin \theta$ & 0 & 1/2 & $1/\sqrt{2}$ & $\sqrt{3}/2$ & 1 & $\sqrt{3}/2$ & $1/\sqrt{2}$ & 1/2 & 0\\ | ||
$\cos \theta$ & 1 & $\sqrt{3}/2$ & $1/\sqrt{2}$ & 1/2 & 0 & -1/2 & $-1/\sqrt{2}$ & $-\sqrt{3}/2$ & -1\\ | ||
$\tan \theta$ & 0 & $1/\sqrt{3}$ & 1 & $\sqrt{3}$ & $\infty$ & $-\sqrt{3}$ & -1 & $-1/\sqrt{3}$ & 0 | ||
\end{tabular} | ||
\end{table} | ||
\end{enumerate} | ||
\item \begin{align*} | ||
\sin^2(2\theta) | ||
&= (2\sin\theta\cos\theta)^2 \\ | ||
&= 4\cos^2(1-\cos^2\theta) | ||
\end{align*} | ||
\item $\cos(2\theta) = -1/2$ implies $2\theta = 4\pi/6$ or $2\theta = 8\pi/6$, i.e. $\theta \in \{\pi/3, 2\pi/3 \}$. | ||
\item | ||
\begin{enumerate}[label=(\alph*)] | ||
\item $e$ | ||
\item \begin{align*} | ||
\frac{e^{2x}e^{3x+1}}{e^x} = e^xe^{3x+1} | ||
\end{align*} | ||
\item \begin{align*} | ||
\frac{1}{3} \log_e 8 - \frac{1}{2} \log_e 4 | ||
&= 3 \cdot \frac{1}{3} \log_e 2 - 2 \cdot \frac{1}{2} \log_e 2 \\ | ||
&= 0 | ||
\end{align*} | ||
\item \begin{align*} | ||
e^{-\log_e 2} = 1/2 | ||
\end{align*} | ||
\end{enumerate} | ||
\item \begin{align*} | ||
e^{2x} + 2e^x - 3 = 0 | ||
\end{align*} | ||
Let $y = e^x$. Then we have | ||
\begin{align*} | ||
y^2 + 2y - 3 &= 0 \\ | ||
(y + 3)(y - 1) &= 0 | ||
\end{align*} | ||
hence $e^x = -3$ or $e^x = 1$, | ||
|
||
hence the only real solution is $x = \ln 1$. | ||
\end{enumerate} | ||
|
||
\includegraphics[width=400pt]{img/ou-entry-cdc6.png} | ||
|
||
|
||
\includegraphics[width=400pt]{img/ou-entry-ce7c.png} | ||
\begin{enumerate} | ||
\item \begin{align*} | ||
\sum_{n=0}^\infty \Big(\frac{1}{5}\Big)^n | ||
\end{align*} | ||
Geometric series formula...how to derive? | ||
\item | ||
\begin{enumerate}[item=(\alph*)] | ||
\item Ratio test: | ||
\begin{align*} | ||
\lim_{n\to\infty} \frac{1/(n+1)}{1/n} | ||
&= \lim_{n\to\infty} \frac{n}{n+1} \\ | ||
&= \lim_{n\to\infty} \frac{1}{1 + 1/n} \\ | ||
&= 1 | ||
\end{align*} | ||
Inconclusive by the ratio test. | ||
|
||
This is the harmonic series and it diverges. | ||
\item \begin{align*} | ||
\frac{(-1)^{n+2}}{n+1} / \frac{(-1)^{n+1}}{n} | ||
&= \frac{(-1)^{n+2}n}{(-1)^{n+1}(n+1)} \\ | ||
&= (1 + n)(-1) < 0 | ||
\end{align*} | ||
Converges by Alternating Series test. | ||
\end{enumerate} | ||
\item Ratio test: | ||
\begin{align*} | ||
\lim_{n\to\infty} \frac{1/(n+1)^2}{1/n^2} | ||
&= \lim_{n\to\infty} \frac{n^2}{n^2 + 2n + 1} \\ | ||
&= \lim_{n\to\infty} \frac{1}{1 + 2/n + 1/n^2} \\ | ||
&= 1 | ||
\end{align*} | ||
Inconclusive. This converges; every term is smaller than harmonic series. | ||
|
||
\end{enumerate} | ||
|
||
|
||
\includegraphics[width=400pt]{img/ou-entry-a82d.png} | ||
|
||
|
||
|
||
\includegraphics[width=400pt]{img/ou-entry-efb5.png} | ||
|
||
\begin{enumerate} | ||
\item False. E.g. the maximum of $f(x) = x$ occurs at $b$ and yet $f'(b) = 1$. | ||
\item False. This is only true if $f$ is continuous. Counter-example | ||
\begin{align*} | ||
f(x) = | ||
\begin{cases} | ||
-1 &~~~\text{if}~~~ x <= 0\\ | ||
1 &~~~\text{if}~~~ x > 0 | ||
\end{cases} | ||
\end{align*} | ||
\item | ||
\end{enumerate} |