Skip to content

Commit

Permalink
Declare DirectedSets.DS_set as coercion
Browse files Browse the repository at this point in the history
The coercion from `DirectedSets` to `Sortclass` makes some code easier
to write.
  • Loading branch information
Columbus240 committed Aug 6, 2024
1 parent 669ce80 commit c74949c
Show file tree
Hide file tree
Showing 9 changed files with 67 additions and 67 deletions.
14 changes: 7 additions & 7 deletions theories/Topology/Compactness.v
Original file line number Diff line number Diff line change
Expand Up @@ -299,7 +299,7 @@ Qed.

Lemma compact_impl_net_cluster_point:
forall X:TopologicalSpace, compact X ->
forall (I:DirectedSet) (x:Net I X), inhabited (DS_set I) ->
forall (I:DirectedSet) (x:Net I X), inhabited I ->
exists x0:X, net_cluster_point x x0.
Proof.
intros.
Expand All @@ -311,7 +311,7 @@ apply H1.
Qed.

Lemma net_cluster_point_impl_compact: forall X:TopologicalSpace,
(forall (I:DirectedSet) (x:Net I X), inhabited (DS_set I) ->
(forall (I:DirectedSet) (x:Net I X), inhabited I ->
exists x0:X, net_cluster_point x x0) ->
compact X.
Proof.
Expand Down Expand Up @@ -357,13 +357,13 @@ apply Extensionality_Ensembles; split; red; intros.
apply closure_inflationary. assumption.
}
destruct (net_limits_determine_topology _ _ H2) as [I0 [y []]].
pose (yS (i:DS_set I0) := exist (fun x:X => In S x) (y i) (H3 i)).
pose (yS (i:I0) := exist (fun x:X => In S x) (y i) (H3 i)).
assert (inhabited (SubspaceTopology S)).
{ destruct H1.
constructor.
now exists x0.
}
assert (inhabited (DS_set I0)) as HinhI0.
assert (inhabited I0) as HinhI0.
{ red in H4.
destruct (H4 Full_set) as [i0]; auto with topology.
constructor.
Expand All @@ -380,14 +380,14 @@ apply net_cluster_point_impl_subnet_converges in H6.
}
destruct H6 as [J [y' [HySy' Hy']]].
destruct HySy' as [h [Hh0 [Hh1 Hhy']]].
assert (net_limit (fun j:DS_set J => y (h j)) x0).
assert (net_limit (fun j:J => y (h j)) x0).
{ apply continuous_func_preserves_net_limits with
(f:=subspace_inc S) (Y:=X) in Hy'.
- cbn in Hy'.
eapply net_limit_compat; eauto.
intros ?; cbn. rewrite Hhy'. reflexivity.
- apply continuous_func_continuous_everywhere, subspace_inc_continuous. }
assert (net_limit (fun j:DS_set J => y (h j)) x).
assert (net_limit (fun j:J => y (h j)) x).
{ apply subnet_limit with I0 y; trivial.
exists h. now constructor. }
assert (x = x0).
Expand Down Expand Up @@ -443,7 +443,7 @@ intros.
apply net_cluster_point_impl_compact.
intros.
destruct (compact_impl_net_cluster_point _ H
_ (fun i:DS_set I => subspace_inc _ (x i))) as [x0]; trivial.
_ (fun i:I => subspace_inc _ (x i))) as [x0]; trivial.
assert (In S x0).
{ rewrite <- (closure_fixes_closed S); trivial.
eapply net_cluster_point_in_closure;
Expand Down
2 changes: 1 addition & 1 deletion theories/Topology/Completeness.v
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ Definition cauchy (x:nat->X) : Prop :=
Definition complete : Prop :=
forall x:nat -> X, cauchy x ->
exists x0 : X, forall eps:R,
eps > 0 -> for large i:DS_set nat_DS,
eps > 0 -> for large i:nat_DS,
d x0 (x i) < eps.

Lemma cauchy_impl_bounded (x : nat -> X) :
Expand Down
6 changes: 3 additions & 3 deletions theories/Topology/FiltersAndNets.v
Original file line number Diff line number Diff line change
Expand Up @@ -7,10 +7,10 @@ Section net_tail_filter.
Variable X:TopologicalSpace.
Variable J:DirectedSet.
Variable x:Net J X.
Hypothesis J_nonempty: inhabited (DS_set J).
Hypothesis J_nonempty: inhabited J.

Definition net_tail (j:DS_set J) :=
Im [ i:DS_set J | DS_ord j i ] x.
Definition net_tail (j:J) :=
Im [ i:J | DS_ord j i ] x.

Definition tail_filter_basis : Family (point_set X) :=
Im Full_set net_tail.
Expand Down
8 changes: 4 additions & 4 deletions theories/Topology/MetricSpaces.v
Original file line number Diff line number Diff line change
Expand Up @@ -287,7 +287,7 @@ Qed.
Lemma metric_space_net_limit: forall (X:TopologicalSpace)
(d:X -> X -> R), metrizes X d ->
forall (I:DirectedSet) (x:Net I X) (x0:X),
(forall eps:R, eps > 0 -> for large i:DS_set I, d x0 (x i) < eps) ->
(forall eps:R, eps > 0 -> for large i:I, d x0 (x i) < eps) ->
net_limit x x0.
Proof.
intros.
Expand All @@ -306,7 +306,7 @@ Lemma metric_space_net_limit_converse: forall (X:TopologicalSpace)
(d:X -> X -> R), metrizes X d ->
forall (I:DirectedSet) (x:Net I X) (x0:X),
net_limit x x0 -> forall eps:R, eps > 0 ->
for large i:DS_set I, d x0 (x i) < eps.
for large i:I, d x0 (x i) < eps.
Proof.
intros.
pose (U:=open_ball d x0 eps).
Expand All @@ -324,7 +324,7 @@ Lemma metric_space_net_cluster_point: forall (X:TopologicalSpace)
(d:X -> X -> R), metrizes X d ->
forall (I:DirectedSet) (x:Net I X) (x0:X),
(forall eps:R, eps > 0 ->
exists arbitrarily large i:DS_set I, d x0 (x i) < eps) ->
exists arbitrarily large i:I, d x0 (x i) < eps) ->
net_cluster_point x x0.
Proof.
intros.
Expand All @@ -344,7 +344,7 @@ Lemma metric_space_net_cluster_point_converse: forall (X:TopologicalSpace)
(d:X -> X -> R), metrizes X d ->
forall (I:DirectedSet) (x:Net I X) (x0:X),
net_cluster_point x x0 -> forall eps:R, eps > 0 ->
exists arbitrarily large i:DS_set I, d x0 (x i) < eps.
exists arbitrarily large i:I, d x0 (x i) < eps.
Proof.
intros.
pose (U:=open_ball d x0 eps).
Expand Down
36 changes: 18 additions & 18 deletions theories/Topology/Nets.v
Original file line number Diff line number Diff line change
Expand Up @@ -4,18 +4,18 @@ From Topology Require Export TopologicalSpaces InteriorsClosures Continuity.
Set Asymmetric Patterns.

Definition Net (I : DirectedSet) (X : Type) : Type :=
DS_set I -> X.
I -> X.

Definition Subnet {I : DirectedSet} {X : Type}
(x : Net I X) {J : DirectedSet} (y : Net J X) : Prop :=
exists (h : DS_set J -> DS_set I),
exists (h : J -> I),
(* [h] is monotonous *)
(forall j1 j2 : DS_set J,
(forall j1 j2 : J,
DS_ord j1 j2 -> DS_ord (h j1) (h j2)) /\
(exists arbitrarily large i : DS_set I,
exists j : DS_set J, h j = i) /\
(exists arbitrarily large i : I,
exists j : J, h j = i) /\
(* [y] is [x ∘ h] *)
(forall j : DS_set J,
(forall j : J,
y j = x (h j)).

Lemma Subnet_refl {I : DirectedSet} {X : Type} (x : Net I X) :
Expand Down Expand Up @@ -54,14 +54,14 @@ Variable X:TopologicalSpace.

Definition net_limit (x:Net I X) (x0:X) : Prop :=
forall U:Ensemble X, open U -> In U x0 ->
for large i:DS_set I, In U (x i).
for large i:I, In U (x i).

Definition net_cluster_point (x:Net I X) (x0:X) : Prop :=
forall U:Ensemble X, open U -> In U x0 ->
exists arbitrarily large i:DS_set I, In U (x i).
exists arbitrarily large i:I, In U (x i).

Lemma net_limit_compat (x1 x2 : Net I X) (x : X) :
(forall i : DS_set I, x1 i = x2 i) ->
(forall i : I, x1 i = x2 i) ->
net_limit x1 x -> net_limit x2 x.
Proof.
intros Hxx Hx1.
Expand All @@ -87,7 +87,7 @@ Qed.

Lemma net_limit_in_closure: forall (S:Ensemble X)
(x:Net I X) (x0:X),
(exists arbitrarily large i:DS_set I, In S (x i)) ->
(exists arbitrarily large i:I, In S (x i)) ->
net_limit x x0 -> In (closure S) x0.
Proof.
intros.
Expand All @@ -105,7 +105,7 @@ Qed.

Lemma net_cluster_point_in_closure: forall (S:Ensemble X)
(x:Net I X) (x0:X),
(for large i:DS_set I, In S (x i)) ->
(for large i:I, In S (x i)) ->
net_cluster_point x x0 -> In (closure S) x0.
Proof.
intros.
Expand Down Expand Up @@ -192,7 +192,7 @@ Lemma net_limits_determine_topology:
forall {X:TopologicalSpace} (S:Ensemble X)
(x0:X), In (closure S) x0 ->
exists I:DirectedSet, exists x:Net I X,
(forall i:DS_set I, In S (x i)) /\ net_limit x x0.
(forall i:I, In S (x i)) /\ net_limit x x0.
Proof.
intros.
assert (forall U:Ensemble X, open U -> In U x0 ->
Expand Down Expand Up @@ -273,7 +273,7 @@ Variable f:X -> Y.
Lemma continuous_func_preserves_net_limits:
forall {I:DirectedSet} (x:Net I X) (x0:X),
net_limit x x0 -> continuous_at f x0 ->
net_limit (fun i:DS_set I => f (x i)) (f x0).
net_limit (fun i:I => f (x i)) (f x0).
Proof.
intros.
red. intros V ? ?.
Expand All @@ -283,7 +283,7 @@ assert (neighborhood V (f x0)).
destruct (H0 V H3) as [U [? ?]].
destruct H4.
pose proof (H U H4 H6).
apply eventually_impl_base with (fun i:DS_set I => In U (x i));
apply eventually_impl_base with (fun i:I => In U (x i));
trivial.
intros.
assert (In (inverse_image f V) (x i)) by auto with sets.
Expand All @@ -293,7 +293,7 @@ Qed.
Lemma func_preserving_net_limits_is_continuous:
forall x0:X,
(forall (I:DirectedSet) (x:Net I X),
net_limit x x0 -> net_limit (fun i:DS_set I => f (x i)) (f x0))
net_limit x x0 -> net_limit (fun i:I => f (x i)) (f x0))
-> continuous_at f x0.
Proof.
intros.
Expand Down Expand Up @@ -355,10 +355,10 @@ Section cluster_point_subnet.

Variable x0:X.
Hypothesis x0_cluster_point: net_cluster_point x x0.
Hypothesis I_nonempty: inhabited (DS_set I).
Hypothesis I_nonempty: inhabited I.

Record cluster_point_subnet_DS_set : Type := {
cps_i:DS_set I;
cps_i:I;
cps_U:Ensemble X;
cps_U_open_neigh: open_neighborhood cps_U x0;
cps_xi_in_U: In cps_U (x cps_i)
Expand Down Expand Up @@ -427,7 +427,7 @@ Defined.

Definition cluster_point_subnet : Net
cluster_point_subnet_DS X :=
fun (iU:DS_set cluster_point_subnet_DS) =>
fun (iU : cluster_point_subnet_DS) =>
x (cps_i iU).

Lemma cluster_point_subnet_is_subnet:
Expand Down
8 changes: 4 additions & 4 deletions theories/Topology/ProductTopology.v
Original file line number Diff line number Diff line change
Expand Up @@ -24,8 +24,8 @@ Qed.

Lemma product_net_limit: forall (I:DirectedSet)
(x:Net I ProductTopology) (x0:ProductTopology),
inhabited (DS_set I) ->
(forall a:A, net_limit (fun i:DS_set I => x i a) (x0 a)) ->
inhabited I ->
(forall a:A, net_limit (fun i:I => x i a) (x0 a)) ->
net_limit x x0.
Proof.
intros.
Expand Down Expand Up @@ -215,8 +215,8 @@ apply net_limit_in_projections_impl_net_limit_in_weak_topology.
now destruct (x0 i).
+ unfold product_space_proj.
simpl.
replace (fun i:DS_set I => prod2_conv2 (x0 i) twoT_2) with
(fun i:DS_set I => snd (x0 i)).
replace (fun i:I => prod2_conv2 (x0 i) twoT_2) with
(fun i:I => snd (x0 i)).
* now apply net_limit_in_weak_topology_impl_net_limit_in_projections
with (a:=twoT_2) in H.
* extensionality i.
Expand Down
12 changes: 6 additions & 6 deletions theories/Topology/RTopology.v
Original file line number Diff line number Diff line change
Expand Up @@ -173,21 +173,21 @@ exists R_metric.
Qed.

Lemma bounded_real_net_has_cluster_point: forall (I:DirectedSet)
(x:Net I RTop) (a b:R), (forall i:DS_set I, a <= x i <= b) ->
(x:Net I RTop) (a b:R), (forall i:I, a <= x i <= b) ->
exists x0:RTop, net_cluster_point x x0.
Proof.
(* idea: the liminf is a cluster point *)
intros.
destruct (classic (inhabited (DS_set I))) as [Hinh|Hempty].
destruct (classic (inhabited I)) as [Hinh|Hempty].
2: {
exists a.
red. intros.
red. intros.
contradiction Hempty.
now exists.
}
assert (forall i:DS_set I, { y:R | is_glb
(Im [ j:DS_set I | DS_ord i j ] x) y }).
assert (forall i:I, { y:R | is_glb
(Im [ j:I | DS_ord i j ] x) y }).
{ intro.
apply inf.
- exists a.
Expand Down Expand Up @@ -221,7 +221,7 @@ assert ({ x0:R | is_lub (Im Full_set (fun i => proj1_sig (X i))) x0 }).
}
destruct H0 as [x0].
exists x0.
assert (forall i j:DS_set I,
assert (forall i j:I,
DS_ord i j -> proj1_sig (X i) <= proj1_sig (X j)).
{ intros.
destruct (X i0), (X j).
Expand Down Expand Up @@ -283,7 +283,7 @@ Proof.
intros a b Hbound.
apply net_cluster_point_impl_compact.
intros.
pose (y := fun i:DS_set I => proj1_sig (x i)).
pose (y := fun i:I => proj1_sig (x i)).
destruct (bounded_real_net_has_cluster_point _ y a b).
{ intros.
unfold y.
Expand Down
12 changes: 6 additions & 6 deletions theories/Topology/WeakTopology.v
Original file line number Diff line number Diff line change
Expand Up @@ -71,13 +71,13 @@ Qed.
Section WeakTopology_and_Nets.

Variable I:DirectedSet.
Hypothesis I_nonempty: inhabited (DS_set I).
Hypothesis I_nonempty: inhabited I.
Variable x:Net I WeakTopology.
Variable x0:X.

Lemma net_limit_in_weak_topology_impl_net_limit_in_projections :
net_limit x x0 ->
forall a:A, net_limit (fun i:DS_set I => (f a) (x i)) ((f a) x0).
forall a:A, net_limit (fun i:I => (f a) (x i)) ((f a) x0).
Proof.
intros.
apply continuous_func_preserves_net_limits; trivial.
Expand All @@ -86,7 +86,7 @@ apply weak_topology_makes_continuous_funcs.
Qed.

Lemma net_limit_in_projections_impl_net_limit_in_weak_topology :
(forall a:A, net_limit (fun i:DS_set I => (f a) (x i))
(forall a:A, net_limit (fun i:I => (f a) (x i))
((f a) x0)) ->
net_limit x x0.
Proof.
Expand All @@ -96,19 +96,19 @@ assert (@open_basis WeakTopology
(finite_intersections weak_topology_subbasis)).
{ apply Build_TopologicalSpace_from_open_basis_basis. }
destruct (open_basis_cover _ H2 x0 U) as [V [? [? ?]]]; trivial.
assert (for large i:DS_set I, In V (x i)).
assert (for large i:I, In V (x i)).
{ clear H4.
induction H3.
- destruct I_nonempty.
exists X0; constructor.
- destruct H3.
destruct H5.
apply eventually_impl_base with (fun i:DS_set I => In V (f a (x i))).
apply eventually_impl_base with (fun i:I => In V (f a (x i))).
+ intros.
constructor; trivial.
+ apply H; trivial.
- apply eventually_impl_base with
(fun i:DS_set I => In U0 (x i) /\ In V (x i)).
(fun i:I => In U0 (x i) /\ In V (x i)).
+ intros.
destruct H6.
constructor; trivial.
Expand Down
Loading

0 comments on commit c74949c

Please sign in to comment.