Skip to content

coolgrasshopper/amodal_road_segmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

amodal_road

  1. amodal road segmentation using amodal datasets
  2. code modified based on DANet

Usage

  1. Install pytorch

    • The code is tested on python3.6 and torch 1.4.0.
    • The code is modified from DANet.
  2. Clone the resposity

    git clone https://github.com/coolgrasshopper/amodal_road_segmentation.git 
    cd amodal_road_segmentation
  3. Key files related to training and model construction:

  • experiments/segmentation/encoding/nn/loss.py: define the cross entropy loss that is used for training
  • experiments/segmentation/encoding/model/sseg/danet.py: define the proposed model architecture
  • experiments/segmentation/encoding/nn/da_att.py: the Positional Attention module (PAM) and the Channel Attention Module
  • experiments/segmentation/train.py: training code
  • experiments/segmentation/test.py: testing code
  • overlay.py: evaluation code of far and close IOU
  1. training:
   cd experiments/segmentation
   CUDA_VISIBLE_DEVICES=0,1 python3 train.py --model danet --backbone resnet50 --checkname danet50 --base-size 1024 --crop-size 768 --epochs 240 --batch-size 8 --lr 0.003 --workers 16  
  1. testing:
   cd experiments/segmentation
   CUDA_VISIBLE_DEVICES=0 python3 test.py --model danet --backbone resnet50 --base-size 1024 --crop-size 768 --batch-size 8 --workers 16  

TODO:

  1. update evaluation code to the repo

acknowlegement

semantic-foreground-inpainting

DANet

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published