Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
clementetienam authored Sep 6, 2020
1 parent b601404 commit 40e49a2
Show file tree
Hide file tree
Showing 21 changed files with 1,654 additions and 0 deletions.
12 changes: 12 additions & 0 deletions Crucial/Bayesian_Clement.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,12 @@
function DupdateK=Bayesian_Clement(hypps,N,f,clfx,ytrain,oldfolder,ytrue,alpha,combo1)
% ytrain=y_train;
Sim=zeros(2,N);
for i=1:N
aa=(hypps(:,i))';
Sim(:,i)=abs((Forwarding(aa,f,clfx,ytrain,oldfolder,combo1))');
end

% ytrue=y_train(5,:);

[DupdateK] = ESMDA (hypps,ytrue', N, Sim,alpha);
end
16 changes: 16 additions & 0 deletions Crucial/Bayesian_Clement_2.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,16 @@
function DupdateK=Bayesian_Clement_2(hypps,N,f,clfx,ytrain,...
oldfolder,ytrue,alpha,combo1,suni)
% ytrain=y_train;
%Sim=zeros(2,N);
parfor i=1:N
aa=(hypps(:,i));
aa=reshape(aa,[],suni)
spit=abs((Forwarding(aa,f,clfx,ytrain,oldfolder,combo1)));
spit=reshape(spit,[],1);
Sim(:,i)=spit;
end

% ytrue=y_train(5,:);

[DupdateK] = ESMDA (hypps,reshape(ytrue,[],1), N, Sim,alpha);
end
55 changes: 55 additions & 0 deletions Crucial/ESMDA.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,55 @@
function [DupdateK] = ESMDA (sgsim,f, N, Sim1,alpha)
sd=1;
rng(sd)

%-----------------------------------------------------------------------------

parfor i=1:size(f,1)
aa=f(i,:);
aa1=num2str(aa);
usee=str2num(aa1(1));
stddWOPR1 =1 %0.01*f(i,:);
stdall(i,:)=stddWOPR1;
end

nobs = length(f);
noise = randn(max(10000,nobs),1);

Error1=stdall;
sig=Error1;
parfor i = 1 : length(f)
f(i) = f(i) + sig(i)*noise(end-nobs+i);
end
R = sig.^2;
Dj = repmat(f, 1, N);
parfor i = 1:size(Dj,1)
rndm(i,:) = randn(1,N);
rndm(i,:) = rndm(i,:) - mean(rndm(i,:));
rndm(i,:) = rndm(i,:) / std(rndm(i,:));
Dj(i,:) = Dj(i,:) + sqrt(alpha)*sqrt(R(i)) * rndm(i,:);
end


Cd2 =diag(R);
overall=sgsim;

Y=overall; %State variable,it is important we include simulated measurements in the ensemble state variable
M = mean(Sim1,2);
% Mean of the ensemble state
M2=mean(overall,2);
%M=M'
% Get the ensemble states pertubations
parfor j=1:N
S(:,j)=Sim1(:,j)-M;
end
parfor j=1:N
yprime(:,j)=overall(:,j)-M2;
end
Cyd=(yprime*S')./((N-1));
Cdd=(S*S')./((N-1));

Ynew=Y+(Cyd*pinv2((Cdd+(alpha.*Cd2))))*(Dj-Sim1);

DupdateK=Ynew;

end
105 changes: 105 additions & 0 deletions Crucial/Forwarding.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,105 @@
function [Hardmean,Softmean]=Forwarding(parameters,fv,...
clfx,y_train,oldfolder,combo1)

X_test=(clfx.transform(parameters));

cd(oldfolder);

%%
for ii=1:size(y_train,2)
% fprintf('Predicting measurement %d | %d .\n', ii,2);
folderk = fv;
switch combo1
case 1

cd(folderk)

Classifiers=load('Classifiers');
Classifiers=Classifiers.Classifiers;

Experts=load('Experts.out');


clfysses=load('clfysses');
clfysses=clfysses.clfysses;

% clfy = MinMaxScalery();
% (clfy.fit(y_train(:,ii)));


Regressors=load('Regressors');
Regressors=Regressors.Regressors;


Xtrainbig=load('Xtrainbig');
Xtrainbig=Xtrainbig.Xtrainbig;

ytrainbig=load('ytrainbig');
ytrainbig=ytrainbig.ytrainbig;

[Hardmean(:,ii)]=prediction_1(Regressors{ii,1},...
pred_class(X_test, Classifiers{ii,1})...
,X_test,Xtrainbig{ii,1},ytrainbig{ii,1},Experts(ii,1),clfysses{ii,1});

[Softmean(:,ii),~]=Unseen_soft_1(Regressors{ii,1},...
Classifiers{ii,1},X_test,Xtrainbig{ii,1},ytrainbig{ii,1}...
,Experts(ii,1),clfysses{ii,1});

case 2

cd(folderk)

% disp('Expert=DNN, Gate=DNN')
Classifiers=load('Classifiers');
Classifiers=Classifiers.Classifiers;

Experts=load('Experts.out');

Classallsbig=load('Classallsbig');
Classallsbig=Classallsbig.Classallsbig;

clfysses=load('clfysses');
clfysses=clfysses.clfysses;

Regressors=load('Regressors');
Regressors=Regressors.Regressors;

% cd(oldfolder)
[Hardmean(:,ii)]=prediction_2(Regressors{ii,1},pred_class(X_test...
, Classifiers{ii,1})...
,X_test,Classallsbig{ii,1},Experts(ii,1),clfysses{ii,1});

[Softmean(:,ii)]=Unseen_soft_2(Regressors{ii,1},...
Classifiers{ii,1},X_test,Classallsbig{ii,1},Experts(ii,1),...
clfysses{ii,1});
case 3

cd(folderk)
Classifiers=load('Classifiers');
Classifiers=Classifiers.Classifiers;

Experts=load('Experts.out');

Classallsbig=load('Classallsbig');
Classallsbig=Classallsbig.Classallsbig;


clfysses=load('clfysses');
clfysses=clfysses.clfysses;

Regressors=load('Regressors');
Regressors=Regressors.Regressors;

% cd(oldfolder)
[Hardmean(:,ii)]=prediction_3(Regressors{ii,1}...
,str2double(predict(Classifiers{ii,1},X_test))...
,X_test,Classallsbig{ii,1},Experts(ii,1),clfysses{ii,1});

[Softmean(:,ii),~]=Unseen_soft_3(Regressors{ii,1}...
,Classifiers{ii,1},X_test,Experts(ii,1),clfysses{ii,1});
%
end
cd(oldfolder)
end

end
108 changes: 108 additions & 0 deletions Crucial/Forwarding_prime.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,108 @@
function [Hardmean,Softmean]=Forwarding_prime(parameters,...
fv,clfx,y_train,oldfolder,combo1)
X_test=(parameters);
cd(oldfolder);

%%
% Answerhard=cell(2,1);
% Answersoft=cell(2,1);
for ii=1:2
% fprintf('Predicting measurement %d | %d .\n', ii,2);
folderk = fv;

switch combo1
case 1

cd(folderk)


Classifiers=load('Classifiers');
Classifiers=Classifiers.Classifiers;

Experts=load('Experts.out');


clfysses=load('clfysses');
clfysses=clfysses.clfysses;

% clfy = MinMaxScalery();
% (clfy.fit(y_train(:,ii)));


Regressors=load('Regressors');
Regressors=Regressors.Regressors;


Xtrainbig=load('Xtrainbig');
Xtrainbig=Xtrainbig.Xtrainbig;

ytrainbig=load('ytrainbig');
ytrainbig=ytrainbig.ytrainbig;

[Hardmean(:,ii),Hardvariance(:,ii)]=prediction_1(Regressors{ii,1},...
pred_class(X_test, Classifiers{ii,1})...
,X_test,Xtrainbig{ii,1},ytrainbig{ii,1},Experts,clfysses{ii,1});
[Softmean(:,ii),Softvariance(:,ii)]=Unseen_soft_1(Regressors{ii,1},...
Classifiers{ii,1},X_test,Xtrainbig{ii,1},ytrainbig{ii,1}...
,Experts,clfysses{ii,1});

case 2

cd(folderk)

% disp('Expert=DNN, Gate=DNN')
Classifiers=load('Classifiers');
Classifiers=Classifiers.Classifiers;

Experts=load('Experts.out');

Classallsbig=load('Classallsbig');
Classallsbig=Classallsbig.Classallsbig;

clfysses=load('clfysses');
clfysses=clfysses.clfysses;

Regressors=load('Regressors');
Regressors=Regressors.Regressors;

% cd(oldfolder)
[Hardmean(:,ii)]=prediction_2(Regressors{ii,1},pred_class(X_test...
, Classifiers{ii,1})...
,X_test,Classallsbig{ii,1},Experts,clfysses{ii,1});

[Softmean(:,ii)]=Unseen_soft_2(Regressors{ii,1},...
Classifiers{ii,1},X_test,Classallsbig{ii,1},...
Experts,clfysses{ii,1});
case 3

cd(folderk)
Classifiers=load('Classifiers');
Classifiers=Classifiers.Classifiers;

Experts=load('Experts.out');

Classallsbig=load('Classallsbig');
Classallsbig=Classallsbig.Classallsbig;


clfysses=load('clfysses');
clfysses=clfysses.clfysses;

Regressors=load('Regressors');
Regressors=Regressors.Regressors;

% cd(oldfolder)
[Hardmean(:,ii),Hardvariance(:,ii)]=prediction_3(Regressors{ii,1}...
,str2double(predict(Classifiers{ii,1},X_test))...
,X_test,Classallsbig{ii,1},Experts,clfysses{ii,1});

[Softmean(:,ii),Softvariance(:,ii)]=Unseen_soft_3(Regressors{ii,1}...
,Classifiers{ii,1},X_test,Experts,clfysses{ii,1});
%
end
cd(oldfolder)
end



end
4 changes: 4 additions & 0 deletions Crucial/Get_cov.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
function cov_big= Get_cov(X_test2,hyp_updated)
for ik=1:size(X_test2,2)
cov_big(:,ik)=cov(hyp_updated(:,ik));
end
17 changes: 17 additions & 0 deletions Crucial/Get_ensemble.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,17 @@
function ensemble_ini=Get_ensemble(N,X_test2,meanss2,meanss)
% for j=1:N
% for jj=1:size(X_test2,2)
% hyp_inipure(:,jj) = normrnd( meanss2(:,jj),0.1*meanss2(:,jj),1,1) ;
% end
% hyp_inipure=abs(hyp_inipure);
% hyp_inipure(:,6)=round(hyp_inipure(:,6));
% hyp_inipure(:,8)=round(hyp_inipure(:,8));
% hyp_ini=(clfx.transform(hyp_inipure));
% ensemble_ini(:,j)=hyp_ini';
% end

for jj=1:size(X_test2,2)
hyp_inipuree(1:N,jj) = unifrnd(meanss2(:,jj),meanss(:,jj),10,1);
end
ensemble_ini=hyp_inipuree';
end
13 changes: 13 additions & 0 deletions Crucial/Get_ensemble_2.m
Original file line number Diff line number Diff line change
@@ -0,0 +1,13 @@
function ensemble_ini=Get_ensemble_2(N,X_test2,meanss2,meanss,Nop)

p=2;
szss=Nop;
for k=1:N
for jj=1:size(X_test2,2)
aj=meanss2(:,jj)+ (meanss(:,jj)- meanss2(:,jj))*sum(rand(szss,p),2)/p;
% hyp_inipuree(:,jj) = unifrnd(meanss2(:,jj),meanss(:,jj),szss,1);
hyp_inipuree(:,jj) = reshape(aj,[],1);
end

ensemble_ini(:,k)=reshape(hyp_inipuree,[],1);
end
Loading

0 comments on commit 40e49a2

Please sign in to comment.